(本題滿分10分)已知曲線上的動點(diǎn)滿足到點(diǎn)的距離比到直線 的距離小
(1)求曲線的方程;
(2)動點(diǎn)在直線 上,過點(diǎn)作曲線的切線,切點(diǎn)分別為
(ⅰ)求證:直線恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(ⅱ)在直線上是否存在一點(diǎn),使得為等邊三角形(點(diǎn)也在直線上)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
.解:(1) 曲線的方程         --------------3分
(2)(。┰O(shè)
整理得:
同理可得:
 


    --------------------------6分
(ⅱ)由(。┲中點(diǎn)
當(dāng)時(shí),則的中垂線方程為
的中垂線與直線的交點(diǎn)


為等邊三角形,則

解得此時(shí),
當(dāng)時(shí),經(jīng)檢驗(yàn)不存在滿足條件的點(diǎn)
綜上可得:滿足條件的點(diǎn)存在,坐標(biāo)為.----------------------10分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)

(圖4)

 
橢圓的離心率為,且過點(diǎn).

⑴求橢圓的方程;
⑵當(dāng)直線與橢圓相交時(shí),求m的取值范圍;
⑶設(shè)直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)(1,0)和定圓B:動圓P和定圓B相切并過A點(diǎn),
(1)  求動圓P的圓心P的軌跡C的方程。
(2)  設(shè)Q是軌跡C上任意一點(diǎn),求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)在平面直角坐標(biāo)系中,設(shè)點(diǎn),直線:,點(diǎn)在直線上移動,是線段軸的交點(diǎn),
(I)求動點(diǎn)的軌跡的方程;
(II)設(shè)圓,且圓心在曲上, 設(shè)圓,且圓心在曲線 上,是圓軸上截得的弦,當(dāng)運(yùn)動時(shí)弦長是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線與橢圓(a>0,m>b>0)的離心率互為倒數(shù),那
么以a、b、m為邊長的三角形是
A.銳角三角形B.直角三角形C.鈍角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)F與雙曲線的右焦點(diǎn)重合,過點(diǎn)且斜率為1的直線與拋物線交于兩點(diǎn)
(1)求拋物線的方程
(2)求弦中點(diǎn)到拋物線準(zhǔn)線的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)設(shè)橢圓的左、右焦點(diǎn)分別為F1
F2,直線過橢圓的一個(gè)焦點(diǎn)F2且與橢圓交于P、Q兩點(diǎn),若的周長為。
(1)求橢圓C的方程;
(2)設(shè)橢圓C經(jīng)過伸縮變換變成曲線,直線與曲線相切
且與橢圓C交于不同的兩點(diǎn)A、B,若,求面積的取值范圍。(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知點(diǎn),過點(diǎn)作拋物線的切線,切點(diǎn)在第二象限,如圖.
(Ⅰ)求切點(diǎn)的縱坐標(biāo);
(Ⅱ)若離心率為的橢圓 恰好經(jīng)過切點(diǎn),設(shè)切線交橢圓的另一點(diǎn)為,記切線的斜率分別為,若,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的一條漸近線方程為,則該雙曲線的離心率的值為
A.B.C.D.2

查看答案和解析>>

同步練習(xí)冊答案