【題目】設(shè)點,的坐標(biāo)分別為,,直線,相交于點,且它們的斜率之積為-2,設(shè)點的軌跡是曲線.
(1)求曲線的方程;
(2)已知直線與曲線相交于不同兩點、(均不在坐標(biāo)軸上的點),設(shè)曲線與軸的正半軸交于點,若,垂足為且,求證:直線恒過定點.
【答案】(1)(2)見解析
【解析】
(1)建立平面直角坐標(biāo)系,設(shè),根據(jù)直線,的斜率之積為-2,列方程,整理即可得出曲線的軌跡方程.
(2)聯(lián)立直線與曲線方程得,根據(jù)有兩個不相同的交點,有根的判別式得①,再利用韋達(dá)定理得,.
根據(jù)列等式方程,整理即可求出或,分別與討論得出直線恒過定點.
解:(1)建立平面直角坐標(biāo)系,設(shè),
因為直線,的斜率之積為-2
所以,
整理得曲線的方程為:
(2)由題意:聯(lián)立
得,
由得①
設(shè),,則,.
,
所以
即,
,
所以或均適合①.
當(dāng)時,直線過點,
當(dāng)時,直線過點,舍.
所以直線恒過定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形所在的平面與等腰梯形所在的平面互相垂直,,.,.
(1)求證:平面;
(2)求二面角的余弦值;
(3)線段上是否存在點,使得平面?不需說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,過點的直線與拋物線交于、兩點,且當(dāng)直線斜率為2時,.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過點作拋物線的兩條弦與,問在軸上是否存在一定點,使得直線過點時,為定值?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓C過點,焦點,圓O的直徑為.
(1)求橢圓C及圓O的方程;
(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點P.
①若直線l與橢圓C有且只有一個公共點,求點P的坐標(biāo);
②直線l與橢圓C交于兩點.若的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】回收1噸廢紙可以生產(chǎn)出0.8噸再生紙,可能節(jié)約用水約100噸,節(jié)約用煤約1.2噸,回收1噸廢鉛蓄電池可再生鉛約0.6噸,可節(jié)約用煤約0.8噸,節(jié)約用水約120噸,回收每噸廢鉛蓄電池的費用約0.9萬元,回收1噸廢紙的費用約為0.2萬元.現(xiàn)用于回收廢紙和廢鉛蓄電池的費用不超過18萬元,在保證節(jié)約用煤不少于12噸的前提下,最多可節(jié)約用水約__________噸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生平均每天體育鍛煉時間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉的時間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均體育鍛煉時間在的學(xué)生評價為“鍛煉達(dá)標(biāo)”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出10人,進(jìn)行體育鍛煉體會交流,
(i)求這10人中,男生、女生各有多少人?
(ii)從參加體會交流的10人中,隨機選出2人作重點發(fā)言,記這2人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)當(dāng)時,恒有,求實數(shù)的取值范圍.
附:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國時期吳國數(shù)學(xué)家趙爽所注《周牌算經(jīng)》中給出了勾股定理的絕妙證明.右面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實黃實,利用勾股(股勾)朱實黃實弦實,化簡,得勾股弦,設(shè)勾股中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù),)
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com