(本小題滿分12分)

為了加快經(jīng)濟的發(fā)展,某市選擇AB兩區(qū)作為龍頭帶動周邊地區(qū)的發(fā)展,決定在A、B兩區(qū)的周邊修建城際快速通道,假設A、B兩區(qū)相距個單位距離,城際快速通道所在的曲線為E,使快速通道E上的點到兩區(qū)的距離之和為4個單位距離.

   (Ⅰ)以線段AB的中點O為原點建立如圖所示的直角坐標系,求城際快速通道所在曲線E的方程;

   (Ⅱ)若有一條斜率為的筆直公路l與曲線E交于P,Q兩點,同時在曲線E上建一個加油站M(橫坐標為負值)滿足,面積的最大值.                                

 

【答案】

(Ⅰ) ;(Ⅱ)面積的最大值為.

【解析】本試題主要是考查了圓錐曲線的 定義法求解軌跡方程,然后結(jié)合直線與橢圓的位置關系和點到線的距離和三角形的面積公式得到求解。

(1)因為設點T為曲線E上的任意一點,則|TA|+|TB|=4,|AB|=2,結(jié)合橢圓的定義得到曲線方程。

(2)設出直線PQ的方程與橢圓方程聯(lián)立,得到關于x的一元二次方程,然后結(jié)合韋達定理和點到直線的距離公式表示出三角形的面積得到結(jié)論。

解:(Ⅰ)設點為曲線上的任意一點,則

所以曲線的軌跡為橢圓,,所以橢圓方程為  ………4分

(Ⅱ)設直線PQ的方程為,設

代入橢圓方程并化簡得,             

,可得 .    ()      …………………5分

,

.                 ………………………………7分         

,的橫坐標又為負值,所以點的坐標為  

所以點的距離為,                        ……………………………9分

,

當且僅當,即時取等號(滿足式)

所以面積的最大值為.                   …………………………………12分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案