已知tan(π+α)=2,則
sinα+sin(
π
2
+α)
sinα+cos(π-α)
=
3
3
分析:由條件利用誘導(dǎo)公式求得tanα=2,再利用同角三角函數(shù)的基本關(guān)系把要求的式子化為
tanα+1
tanα-1
,從而求得結(jié)果.
解答:解:由已知tan(π+α)=2,可得tanα=2.
sinα+sin(
π
2
+α)
sinα+cos(π-α)
=
sinα+cosα
sinα-cosα
=
tanα+1
tanα-1
=
2+1
2-1
=3,
故答案為 3.
點(diǎn)評:本題主要考查同角三角函數(shù)的基本關(guān)系,誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-
1
3
cosβ=
5
5
,α,β∈(0,π)
(1)求tan(α+β)的值;
(2)求函數(shù)f(x)=
2
sin(x-α)+cos(x+β)
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα,tanβ為方程x2-3x-3=0兩根.
(1)求tan(α+β)的值;
(2)求sin2(α+β)-3sin(2α+2β)-3cos2(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(θ+
π
4
)=-3
,則sin2θ+sinθcosθ-2cos2θ=( 。
A、-
4
3
B、
5
4
C、-
3
4
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan
α
2
=2,
求;(1)tan(α+
π
4
)
的值;
(2)
6sinα+cosα
3sinα-2cosα
的值;
(3)3sin2α+4sinαcosα+5cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知sinα-cosα=
17
13
,α∈(0,π),求tanα的值;
(2)已知tanα=2,求
2sinα-cosα
sinα+3cosα

查看答案和解析>>

同步練習(xí)冊答案