若不等式
對任意
都成立,則實數(shù)a取值范圍是
。
試題分析:顯然
時,有
.
令
,
① 當
時,對任意
,
,
在
上遞減,
,此時
,
的最小值為0,不適合題意.
② 當
時,對任意
,
,所以
,函數(shù)在
上單調(diào)遞
減,在
遞增,所以
的最小值為
,解得
所以實數(shù)
的范圍是
.
點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調(diào)性與最值,考查分類討論的數(shù)學思想,正
確求導是關(guān)鍵.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)函數(shù)
.
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ)若
,且
在區(qū)間
內(nèi)存在極值,求整數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖是函數(shù)
的導函數(shù)
的圖象,對此圖象,有如下結(jié)論:
①在區(qū)間(-2,1)內(nèi)
是增函數(shù);
②在區(qū)間(1,3)內(nèi)
是減函數(shù);
③在
時,
取得極大值;
④在
時,
取得極小值。
其中正確的是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
,設(shè)函數(shù)
(1)若
,求函數(shù)
在
上的最小值
(2)判斷函數(shù)
的單調(diào)性
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
對于三次函數(shù)
,給出定義:設(shè)
是函數(shù)
的導數(shù),
是
的導數(shù),若方程
有實數(shù)解
,則稱點
為函數(shù)
的“拐點”.某同學經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”應對對稱中心.根據(jù)這一發(fā)現(xiàn),則函數(shù)
的對稱中心為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
在R上可導,且
,則
與
的大小為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在區(qū)間
上的最大值是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
求函數(shù)
在區(qū)間
上的最值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
是函數(shù)
的一個極值點。
(Ⅰ)求
;
(Ⅱ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若直線
與函數(shù)
的圖象有3個交點,求
的取值范圍。
查看答案和解析>>