【題目】
已知.f(x)=sinxcosx-cos2x+
(1)求f(x)的最小正周期,并求其圖象對稱中心的坐標;
(2)當0≤x≤時,求函數(shù)f(x)的值域.
【答案】(1) (k∈Z) (2)
【解析】試題分析:(1)先對函數(shù)f(x)=sinxcosx-cos2x+=sin2x- (cos2x+1)+化簡得
f(x)=sin,令sin=0,得=kπ(k∈Z)解得對稱中心(2)0≤x≤所以-≤2x-≤,根據(jù)正弦函數(shù)圖像得出值域.
試題解析:
(1)f(x)=sinxcosx-cos2x+=sin2x- (cos2x+1)+
=sin2x-cos2x=sin,所以f(x)的最小正周期為π.令sin=0,得=/span>kπ(k∈Z),所以x= (k∈Z).
故f(x)圖象對稱中心的坐標為 (k∈Z).
(2)因為0≤x≤,所以-≤2x-≤,
所以≤sin≤1,即f(x)的值域為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,若函數(shù)g(x)=f2(x)﹣axf(x)恰有6個零點,則a的取值范圍是( )
A.(0,3)
B.(1,3)
C.(2,3)
D.(0,2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知y=f(x)是偶函數(shù),而y=f(x+1)是奇函數(shù),且對任意0≤x≤1,都有f(x)≥0,f(x)是增函數(shù),則a=f(2010),b=f( ),c=﹣f( )的大小關(guān)系是( )
A.b<c<a
B.c<b<a
C.a<c<b
D.a<b<c
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AE:EB=1:2.
(1)求△AEF與△CDF的周長比;
(2)如果△AEF的面積等于6cm2 , 求△CDF的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下列命題:
①命題:x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3;
②若f(x)=2x﹣2﹣x,則x∈R,f(﹣x)=﹣f(x);
③若f(x)=x+,則x0∈(0,+∞),f(x0)=1;
④等差數(shù)列{an}的前n項和為Sn,若a4=3,則S7=21;
⑤在△ABC中,若A>B,則sinA>sinB.
其中真命題是____.(只填寫序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某產(chǎn)品的歷史收益率的頻率分布直方圖如圖所示:
(1)試計算該產(chǎn)品收益率的中位數(shù);
(2)若該產(chǎn)品的售價(元)與銷量(萬件)之間有較強線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如表5組與的對應(yīng)數(shù)據(jù):
售價(元) | 25 | 30 | 38 | 45 | 52 |
銷量(萬份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
據(jù)此計算出的回歸方程為,求的值;
(3)若從上述五組銷量中隨機抽取兩組,求兩組銷量中恰有一組超過6萬件的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
如圖,在正方形ABCD中,點E,F(xiàn)分別是AB,BC的中點.將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于P.
(1)求證:平面PBD⊥平面BFDE;
(2)求二面角P﹣DE﹣F的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com