【題目】下列四個(gè)命題中,真命題是( )
A.若m>1,則x2﹣2x+m>0
B.“正方形是矩形”的否命題
C.“若x=1,則x2=1”的逆命題
D.“若x+y=0,則x=0,且y=0”的逆否命題.
【答案】A
【解析】解:對(duì)于A,當(dāng)m>1時(shí),方程x2﹣2x+m=0的判別式△<0,對(duì)應(yīng)二次函數(shù)圖象開口向上且與x軸無交點(diǎn),∴函數(shù)值恒大于0,故A正確;
對(duì)于B,“正方形是矩形”的否命題是“若一個(gè)四邊形不是正方形,則它不是矩形”,為假命題,故B不正確;
對(duì)于C,“若x=1,則x2=1”的逆命題是“若x2=1,則x=1”,x=±1,為假命題,故C不正確;
對(duì)于D,“若x+y=0,則x=0,且y=0”的逆否命題是“若x≠0,或y≠0,則x+y≠0”,若x≠0,或y≠0,則x+y=0,為假命題,故D不正確.
∴真命題是:A.
故選:A.
【考點(diǎn)精析】利用四種命題對(duì)題目進(jìn)行判斷即可得到答案,需要熟知原命題:若P則q; 逆命題:若q則p;否命題:若┑P則┑q;逆否命題:若┑q則┑p.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義域?yàn)镽的連續(xù)函數(shù)f(x)惟一的零點(diǎn)x0同時(shí)在區(qū)間(0,16),(0,8),(0,4),(0,2)內(nèi),那么下列不等式中正確的是( )
A.f(0)f(1)<0或f(1)f(2)<0
B.f(0)f(1)<0
C.f(1)f(16)>0
D.f(2)f(16)>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R).若f(0)=f(3)<f(1),則( )
A.a>0,3a+b=0
B.a<0,3a+b=0
C.a>0,9a+b=0
D.a<0,9a+b=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>b,c>d,且c,d不為0,那么下列不等式一定成立的是( )
A.ad>bc
B.ac>bd
C.a﹣c>b﹣d
D.a+c>b+d
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)結(jié)論: ①若p∧q是真命題,則¬p可能是真命題;
②命題“x0∈R,x02﹣x0﹣1<0”的否定是“x∈R,x2﹣x﹣1≥0”;
③“a>5且b>﹣5”是“a+b>0”的充要條件;
④當(dāng)a<0時(shí),冪函數(shù)y=xa在區(qū)間(0,+∞)上單調(diào)遞減.
其中正確結(jié)論的個(gè)數(shù)是( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“a,b,c,d成等差數(shù)列”是“a+d=b+c”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com