(理)令,Sn為數(shù)列{ncn}的前n項(xiàng)和,求證不等式
【答案】分析:得an+1-a1==,由a1=1,知(n∈N*),即,所以Sn=C1+2C2+3C3+…nCn=,由此能求出Sn==,從而能夠證明
解答:證明:由,
得an+1-a1=(an+1-an)+(an-an-1)+…+(a2-a1
=
=
又∵a1=1,
(n∈N*),
…(8分)
∴Sn=C1+2C2+3C3+…nCn
=…(1)
(1)式左右兩邊同乘,
…(2)
(1)式減去(2)式,

=
∴Sn=
=…(12分)

∴(3+2n)•=

=,
.…(14分)
點(diǎn)評:本題是函數(shù)與數(shù)列問題型綜合問題,是近年數(shù)學(xué)高考的一個(gè)?键c(diǎn),綜合性強(qiáng),難度大,容易出錯(cuò).解題時(shí)要認(rèn)真審題,注意迭代法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知數(shù)列{an},Sn是其前n項(xiàng)和,Sn=1-an(n∈N*),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令數(shù)列{bn}的前n項(xiàng)和為Tn,bn=(n+1)an,求Tn;
(3)設(shè)cn=
3an
(2-an)(1-an)
,數(shù)列{cn}的前n項(xiàng)和Rn,且Rnλ+
m
λ
(λ>0,m>0)
恒成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)令cn=1-
1
3
an
,Sn為數(shù)列{ncn}的前n項(xiàng)和,求證不等式Sn
2
3
n2-n+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)(1)證明:若數(shù)列{an}有遞推關(guān)系an+1=Aan+B,其中A、B為常數(shù),且A≠1,B≠0,則數(shù)列{an}是以A為公比的等比數(shù)列;

(2)若數(shù)列{an}對于任意的n∈N*都有Sn=2an-n,令f(x)=a1x+a2x2+…+anxn,求函數(shù)f(x)在x=1處的導(dǎo)數(shù).

(文)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知對于任意的n∈N*,都有Sn=2an-n.

(1)求數(shù)列{an}的首項(xiàng)a1及遞推關(guān)系式:an+1=f(an);

(2)先閱讀下面的定理:“若數(shù)列{an}有遞推關(guān)系an+1=Aan+B,其中A、B為常數(shù),且A≠1,B≠0,

則數(shù)列{an}是以A為公比的等比數(shù)列”.請你在(1)的基礎(chǔ)上應(yīng)用本定理,求數(shù)列{an}的通項(xiàng)公式;

(3)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知一列非零向量a n,n∈N*,滿足:a1=(10,-5), a n=(xn,yn)=k(xn-1-yn-1,xn-1+yn-1)(n≥2),其中k是非零常數(shù).

(1)求數(shù)列{| a n|}的通項(xiàng)公式;

(2)求向量a n-1a n的夾角(n≥2);

(3)當(dāng)k=時(shí),把a 1, a 2,…, a n,…中所有與a 1共線的向量按原來的順序排成一列,記為b1,b2,…,bn,…,令OBn=b1+b2+…+bn,O為坐標(biāo)原點(diǎn),求點(diǎn)列{Bn}的極限點(diǎn)B的坐標(biāo).〔注:若點(diǎn)坐標(biāo)為(tn,sn),且tn=t,sn=s,則稱點(diǎn)B(t,s)為點(diǎn)列的極限點(diǎn)〕

(文)設(shè)函數(shù)f(x)=5x-6,g(x)=f(x).

(1)解不等式g(n)[g(1)+g(2)+…+g(n)]<0(n∈N*);

(2)求h(n)=g(n)[g(1)+g(2)+…+g(n)]-132n(n∈N*)的最小值.

查看答案和解析>>

同步練習(xí)冊答案