1 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2n |
3n-1 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2n |
3n-1 |
n×2n+1 |
3n |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2n |
3n-1 |
1 |
3 |
1 |
3 |
2n |
3n-1 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
1 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2n |
3n-1 |
n×2n+1 |
3n |
2 |
3 |
2 |
3 |
1 |
3 |
1 |
3 |
C | 2 n |
2 |
3 |
1 |
3 |
2 |
3 |
1 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3an |
(2-an)(1-an) |
m |
λ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年濱州一模理)(14分)
已知曲線過上一點(diǎn)作一斜率為的直線交曲線于另一點(diǎn),點(diǎn)列的橫坐標(biāo)構(gòu)成數(shù)列,其中.
(I)求與的關(guān)系式;
(II)令,求證:數(shù)列是等比數(shù)列;
(III)若(λ為非零整數(shù),n∈N*),試確定λ的值,使得對任意n∈N*,都有cn+1>cn成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
的切線在Y軸上的截距為bn,數(shù)列{an}滿足:a1=2,an+1=f-1(an)(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)在數(shù)列{}中,僅當(dāng)n=5時,取最小值,求A的取值范圍;
(3)令函數(shù)g(x)=f-1(x)(1+x)2,數(shù)列{cn}滿足:c1=,cn+1=g(cn)(n∈N*),求證:對于一切
n≥2的正整數(shù),都滿足:1<<2.
(文)已知函數(shù)f(x):(0<x<1)的反函數(shù)為f-1(x),數(shù)列{an}滿足:a1=2,an+1=f-1(an) (n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)函數(shù)g(x)=f-1(x)(1+x)2在點(diǎn)(n,g(n))(n∈N*)處的切線在Y軸上的截距為bn,求數(shù)列{bn}的通項公式;
(3)在數(shù)列{bn+}中,僅當(dāng)n=5時,bn+取最大值,求λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com