用一個(gè)平面去截正方體,對(duì)于截面的邊界,有以下圖形:
①鈍角三角形;②直角梯形;③菱形;④正五邊形;⑤正六邊形。
則不可能的圖形的選項(xiàng)為(   )
A.③④⑤B.①②⑤C.①②④D.②③④
C

試題分析:用一個(gè)平面去截正方體,對(duì)于截面的邊界①三角形只能是直角三角形和銳角三角形
②不會(huì)是直角梯形,而是等腰梯形,或者一般梯形;③菱形,可以對(duì)稱的平行截面餓到。
④正五邊形不能得到。⑤正六邊形,過各個(gè)面的底邊的中點(diǎn)得到,成立,故選C.
點(diǎn)評(píng):解決的關(guān)鍵是通過不同角度的作出截面來得到分析,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二面角D—AB—E的大小為,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
⑴求證AE⊥平面BCE;
⑵求二面角B—AC—E的正弦值;
⑶求點(diǎn)D到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
如圖,圓錐的頂點(diǎn)是S,底面中心為O.OC是與底面直徑AB垂直的一條半徑,D是母線SC的中點(diǎn).
(1)求證:BC與SA不可能垂直.
(2)設(shè)圓錐的高為4,異面直線AD與BC所成角的余弦值為,求圓錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在三棱柱中,側(cè)面底面ABC,,且為AC中點(diǎn)。
(I)                   證明:平面ABC;
(II)                 求直線與平面所成角的正弦值;
(III)               在上是否存在一點(diǎn)E,使得平面,若不存在,說明理由;若存在,確定點(diǎn)E的位置。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共13分)
如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠ABC=
BAD=90°,AB中點(diǎn),FPC中點(diǎn).
(I)求證:PEBC;
(II)求二面角CPEA的余弦值;
(III)若四棱錐PABCD的體積為4,求AF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P—ABCD的底面是正方形,PA底面ABCD,PA=2,,

點(diǎn)E,F(xiàn)分別為棱AB,PD的中點(diǎn)。
(I)在現(xiàn)有圖形中,找出與AF平行的平面,并給出證明;
(II)判斷平面PCE與平面PCD是否垂直?若垂直,給出證明;若不垂直,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知三棱柱中,側(cè)棱垂直于底面,底面△ABC中點(diǎn)的中點(diǎn)。
(1)求證:
(2)求證:                     
(3)求
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,分別是直角三角形的中點(diǎn),,沿將三角形折成如圖②所示的銳二面角,若為線段中點(diǎn).求證:


(1)直線平面;(6分)
(2)平面平面.(8分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題14分)
如圖,四棱錐中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E為PD的中點(diǎn)
(1)求異面直線PA與CE所成角的大。
(2)(理)求二面角E-AC-D的大小。
(文)求三棱錐A-CDE的體積。

查看答案和解析>>

同步練習(xí)冊(cè)答案