動點與定點的距離和它到直線的距離之比是常數(shù),記點的軌跡為曲線.
(I)求曲線的方程;
(II)設(shè)直線與曲線交于兩點,為坐標(biāo)原點,求面積的最大值.
(I);(II)

試題分析:(I)找出題中的相等關(guān)系,列出化簡即得曲線的方程;(II)先用弦長公式得,由點到直線距離公式得的高,列出面積表達(dá)式,最后選擇合適的方法求面積的最大值.
試題解析:(I)設(shè)是點到直線的距離,根據(jù)題意,點的軌跡就是集合
  
由此得       
將上式兩邊平方,并化簡得

所以曲線的方程為  
(II)由,
.

.  
于是
   
又原點到直線的距離, 
所以(當(dāng)時取等號)
所以面積的最大值為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線.過點的直線兩點.拋物線在點處的切線與在點處的切線交于點

(Ⅰ)若直線的斜率為1,求;
(Ⅱ)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是橢圓的右焦點,圓軸交于兩點,是橢圓與圓的一個交點,且 
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點與圓相切的直線的另一交點為,且的面積為,求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為拋物線的焦點,拋物線上點滿足

(Ⅰ)求拋物線的方程;
(Ⅱ)點的坐標(biāo)為(,),過點F作斜率為的直線與拋物線交于、兩點,、兩點的橫坐標(biāo)均不為,連結(jié)、并延長交拋物線于、兩點,設(shè)直線的斜率為,問是否為定值,若是求出該定值,若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的焦點恰為雙曲線的右焦點,且兩曲線交點的連線過點,則雙曲線的離心率為  (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,動點到兩條坐標(biāo)軸的距離之和等于它到點的距離,記點的軌跡為曲線.
(I) 給出下列三個結(jié)論:
①曲線關(guān)于原點對稱;
②曲線關(guān)于直線對稱;
③曲線軸非負(fù)半軸,軸非負(fù)半軸圍成的封閉圖形的面積小于
其中,所有正確結(jié)論的序號是_____;
(Ⅱ)曲線上的點到原點距離的最小值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的離心率為,雙曲線的漸近線與橢圓有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓的方程為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線的焦點坐標(biāo)為,則____;準(zhǔn)線方程為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線的左、右焦點分別為,左、右頂點分別為,過焦點軸垂直的直線和雙曲線的一個交點為,若的等比中項,則該雙曲線的離心率為             .

查看答案和解析>>

同步練習(xí)冊答案