分析 (1)由l1與l2相交,得$\frac{m+2}{6}≠\frac{m+3}{2m-1}$,由此能求出m.
(2)由l1與l2平行,得$\frac{m+2}{6}=\frac{m+3}{2m-1}≠\frac{-5}{-5}$,由此能求出m.
(3)由l1與l2重合,得$\frac{m+2}{6}=\frac{m+3}{2m-1}=\frac{-5}{-5}$,由此能求出m.
解答 解:(1)∵直線l1:(m+2)x+(m+3)y-5=0和l2:6x+(2m-1)y-5=0,
l1與l2相交,
∴$\frac{m+2}{6}≠\frac{m+3}{2m-1}$,
解得$m≠-\frac{5}{2}$,m≠4.
(2)∵直線l1:(m+2)x+(m+3)y-5=0和l2:6x+(2m-1)y-5=0,
l1與l2平行,
∴$\frac{m+2}{6}=\frac{m+3}{2m-1}≠\frac{-5}{-5}$,
解得$m=-\frac{5}{2}$.
(3)∵直線l1:(m+2)x+(m+3)y-5=0和l2:6x+(2m-1)y-5=0,
l1與l2重合,
∴$\frac{m+2}{6}=\frac{m+3}{2m-1}=\frac{-5}{-5}$,
解得m=4.
點(diǎn)評 本題考查實(shí)數(shù)值的求法,解題時要認(rèn)真審題,注意兩直線相交、平行、重合的性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com