已知橢圓C:的離心率為,過右頂點(diǎn)A的直線l與橢圓C相交于A,B兩點(diǎn),且B(-1,-3),
(Ⅰ)求橢圓C和直線l的方程;
(Ⅱ)記曲線C在直線l下方的部分與線段AB所圍成的平面區(qū)域(含邊界)為D,若曲線x2-2mx+y2+4y+m2-4=0與區(qū)域D有公共點(diǎn),試求實(shí)數(shù)m的最小值。

解:(Ⅰ)由離心率e=,得,
,①
又點(diǎn)B(-1,-3)在橢圓C:上,即,②
解①②得,
故所求橢圓方程為,
由A(2,0),B(-1,-3)得直線l的方程為y=x-2。
(Ⅱ)曲線x2-2mx+y2+4y+m2-4=0,
即圓(x-m)2+(y+2)2=8,其圓心坐標(biāo)為G(m,-2),半徑r=2,表示圓心在直線y=-2上,半徑為2的動(dòng)圓,
要求實(shí)數(shù)m的最小值,由下圖可知,只須考慮m<0的情形.

設(shè)圓G與直線l相切于點(diǎn)T,則由,得m=±4,
當(dāng)m=-4時(shí),過點(diǎn)G(-4,-2)與直線l垂直的直線l′的方程為x+y+6=0,
解方程組,得T(-2,-4),
因?yàn)閰^(qū)域D內(nèi)的點(diǎn)的橫坐標(biāo)的最小值與最大值分別為-1,2,
所以切點(diǎn)TD,
由圖可知當(dāng)圓G過點(diǎn)B時(shí),m取得最小值,
即(-1-m)2+(-3+2)2=8,解得mmin=--1。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:的離心率為,雙曲線x²-y²=1的漸近線與橢圓有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓c的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年廣東省廣州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:的離心率為,且經(jīng)過點(diǎn)
(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測(cè)試數(shù)學(xué)理卷 題型:選擇題

已知橢圓C:的離心率為,過右焦點(diǎn)且斜率為的直線與橢圓C相交于、兩點(diǎn).若,則 =(      )

A.         B.                  C.2            D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知橢圓C:,它的離心率為.直線與以原點(diǎn)為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年吉林一中高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題

.已知橢圓C:的離心率為,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)直線與橢圓C交于,兩點(diǎn),點(diǎn),且,求直線的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案