已知圓,點為坐標(biāo)原點.
(1)若圓與直線相切時,求中點的軌跡方程;
(2)若圓與相切時,且面積最小,求直線的方程.
(1) (2)
(1)設(shè)的中點,直線
與圓相切,
,即
整理化簡:    ①
中點軌跡方程:
(2)面積為


,解之得(舍)或
,當(dāng)且僅當(dāng)時,等號成立.
由①式得:,

直線的方程:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)設(shè),為直角坐標(biāo)平面內(nèi)軸正方向上的單位向量,若向量,,且.(1)求點的軌跡的方程;(2)過點(0,3)作直線與曲線交于兩點,設(shè),是否存在這樣的直線,使得四邊形是矩形?若存在,求出直線的方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心為坐標(biāo)原點,焦點在軸上,斜率為且過橢圓右焦點的直線交橢圓于兩點,共線.求橢圓的離心率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率,過點的直線與原點的距離為
(1)求橢圓的方程.
(2)已知定點,若直線與橢圓交于兩點,試判斷:是否存在的值,使以為直徑的圓過點?若存在,求出這個值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

兩條直線分別過點,為常數(shù)),且分別繞旋轉(zhuǎn),它們分別交軸于,為參數(shù)),若,求兩直線交點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線的準(zhǔn)線與軸的交點為,過點作直線交拋物線于兩點.
求線段中點的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線,過點作一直線交拋物線于兩點,試求弦中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)在直角坐標(biāo)平面中,△的兩個頂點的坐標(biāo)分別為,平面內(nèi)兩點同時滿足下列條件:①=0;②;③(1)求△的頂點的軌跡方程;(2)過點直線與(1)中軌跡交于不同的兩點,求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

同步練習(xí)冊答案