已知C:x2+y2-2x-2y+1=0,直線l:y=kx,且l與圓C相交于P,Q兩點(diǎn),點(diǎn)M(0,b),且MP⊥MQ.

(1)當(dāng)b=1時(shí),求k的值;

(2)當(dāng)時(shí),求k的取值范圍.

答案:
解析:

  (1)圓,當(dāng)b=1時(shí)點(diǎn)M(0,b)在圓C上

  當(dāng)且僅當(dāng)直線L過(guò)圓心C時(shí),滿足

  圓心的坐標(biāo)為(1,1)

  (2)由,消去y得(1)

  設(shè)

  

  

  

  解得

  (1)中解得


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙Cx2y2+2x-4y+1=0.

(1)若⊙C的切線在x軸、y軸上截距相等,求切線的方程.

(2)從圓外一點(diǎn)P(x0,y0)向圓引切線PM,M為切點(diǎn),O為原點(diǎn),若|PM|=|PO|,求使|PM|最小的P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙C:x2+y2+2x-4y+1=0.

(1)若⊙C的切線在x軸、y軸上截距相等,求切線的方程.

(2)從圓外一點(diǎn)P(x0,y0)向圓引切線PM,M為切點(diǎn),O為原點(diǎn),若|PM|=|PO|,求使|PM|最小的P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東省高一下學(xué)期第一次段考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知⊙Cx2y2+2x-4y+1=0.

(1)若⊙C的切線在x軸、y軸上截距相等,求切線的方程.

(2)從圓外一點(diǎn)P(x0,y0)向圓引切線PMM為切點(diǎn),O為原點(diǎn),若|PM|=|PO|,求使|PM|最小的P點(diǎn)坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年大綱版高三上學(xué)期單元測(cè)試(7)數(shù)學(xué)試卷解析版 題型:解答題

(本小題滿分12分)已知⊙C:x2+y2-2x-2y+1=0,直線l與⊙C相切且分別交x軸、y軸正向于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),且=a,=b(a>2,b>2).

(Ⅰ)求線段AB中點(diǎn)的軌跡方程.

(Ⅱ)求△ABC面積的極小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙C:x2+y2-2x+4y-4=0,問是否存在斜率為1的直線l,使l被⊙C截得弦AB,以AB為直徑的圓經(jīng)過(guò)原點(diǎn).若存在,寫出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案