科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
3 |
MQ |
QN |
MR |
RN |
查看答案和解析>>
科目:高中數(shù)學 來源:2013年浙江省嘉興市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年福建省高三下學期第二次聯(lián)考文數(shù)學試卷(解析版) 題型:解答題
已知橢圓C:的左、右焦點分別為F1、F2,上頂點為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線相切.
(Ⅰ)求橢圓C的方程和離心率e;
(Ⅱ)若點P為焦點F1關于直線的對稱點,動點M滿足. 問是否存在一個定點T,使得動點M到定點T的距離為定值?若存在,求出定點T的坐標及此定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年山東臨沂高三5月高考模擬文科數(shù)學試卷(解析版) 題型:解答題
如圖,已知橢圓C: 的左、右焦點分別為,離心率為,點A是橢圓上任一點,的周長為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點任作一動直線l交橢圓C于兩點,記,若在線段上取一點R,使得,則當直線l轉動時,點R在某一定直線上運動,求該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年黑龍江省高三上學期期末考試數(shù)學文卷 題型:解答題
(本小題滿分12分)已知橢圓C:的左、右頂點的坐標分別為,,離心率。
(Ⅰ)求橢圓C的方程:
(Ⅱ)設橢圓的兩焦點分別為,,若直線與橢圓交于、兩點,證明直線與直線的交點在直線上。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com