已知?jiǎng)訄AP經(jīng)過點(diǎn)F(2,0),且與直線x=-2相切.
(1)求動(dòng)圓的圓心P的軌跡M的方程;
(2)若A,B,C,D是軌跡M上的四個(gè)點(diǎn),且滿足
OF
=m
OA
+n
OB
OF
=r
OC
+s
OD
,
FA
FC
=0,其中O為原點(diǎn),m,n,r,s∈R,且m+n=r+s=1,試判斷以A,B,C,D為頂點(diǎn)的四邊形的面積是否有最小值?若有,求出最小值;若沒有,說明理由.
考點(diǎn):軌跡方程,平面向量的基本定理及其意義
專題:向量與圓錐曲線
分析:(1)由圓心到切線的距離等于圓的半徑可知?jiǎng)訄A的圓心P的軌跡為以F為焦點(diǎn),以x=-2為準(zhǔn)線的拋物線,則拋物線方程可求;
(2)由共線向量基本定理可得AB,CD為經(jīng)過拋物線焦點(diǎn)F的兩條直線,結(jié)合
FA
FC
=0,可知兩直線互相垂直,
設(shè)直線AB的方程為:x=my+2(m<0),和拋物線方程聯(lián)立得到A,B兩點(diǎn)縱坐標(biāo)的和,由弦長(zhǎng)公式求得|AB|,同理求得|CD|,代入四邊形的面積公式后利用基本不等式求最值.
解答: 解:(1)設(shè)動(dòng)圓圓心P(x,y),由題意可知P點(diǎn)到F點(diǎn)的距離等于到直線x=-2的距離,
∴動(dòng)圓的圓心P的軌跡為以F為焦點(diǎn),以x=-2為準(zhǔn)線的拋物線,
則其軌跡M的方程為y2=8x;
(2)由
OF
=m
OA
+n
OB
,
OF
=r
OC
+s
OD
,且m+n=r+s=1可知,
AB,CD為經(jīng)過拋物線焦點(diǎn)F的兩條直線,
FA
FC
=0,
可知兩直線互相垂直,
∵F(2,0),故設(shè)直線AB的方程為:x=my+2(m<0),
聯(lián)立拋物線方程y2=8x,消元可得:y2-8my-16=0,
令A(yù)(x1,y1),B(x2,y2),
則由拋物線的定義可得|AB|=|AF|+|BF|=x1+x2+4=m(y1+y2)+8=8m•m+8=8(m2+1).
∵CD⊥AB,∴CD直線的方程為:x=-
1
m
y+1,
同理|CD|=8[(-
1
m
2+1]
從而S四邊形ABCD=
1
2
|AB||CD|=
1
2
•64•(m2+1)(
1
m2
+1)
=32(2+m2+
1
m2
)≥32(2+2
m2
1
m2
)=128.(當(dāng)m=-1時(shí)取等號(hào)).
因此,以A,B,C,D為頂點(diǎn)的四邊形的面積有最小值,最小值為32,此時(shí)直線AB的斜率為-1.
點(diǎn)評(píng):本題考查了拋物線的定義,考查了直線與拋物線的關(guān)系,訓(xùn)練了共線向量基本定理在解題中的應(yīng)用,這里設(shè)直線方程的方法顯得格外靈活,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若命題p:?x>1,x2>x,則¬p為( 。
A、?x>1,x2≤x
B、?x≤1,x2≤x
C、?x>1,x2≤x
D、?x≤1,x2≤x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1
(1)寫出正方體的12條棱所在的直線中與直線BC1異面的直線;
(2)求直線BC1與AC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖四棱錐A-BCDE中,平面ABC⊥平面BCDE,△ABC為邊長(zhǎng)是2的正三角形,BC=BE=2CD,BE⊥BC,CD∥BE.
(1)求證:AE⊥BD;
(2)求二面角B-AD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(-3,2)的直線與拋物線y2=4x只有一個(gè)公共點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一動(dòng)圓恒過點(diǎn)A(-
2
,0)且恒與定圓B:(x-
2
2+y2=12相切.
(1)求動(dòng)圓圓心C(2)的軌跡M(3)的方程;
(2)過點(diǎn)p(0,2)的直線l與軌跡M交于不同的兩點(diǎn)E、F,求
PE
PF
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的邊長(zhǎng)為2cm,以B為圓心作
AC
,E為CD的中點(diǎn),EP⊥CD交
AC
于點(diǎn)P,求
AP
的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓x2+2y2=8過點(diǎn)P(2,1)引一條弦且弦被點(diǎn)P平分,求弦所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求以點(diǎn)(1,-1)為中點(diǎn)的拋物線y2=8x的弦所在的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案