已知各項都不相等的等差數(shù)列的前六項和為60,且 的等比中項.
(I)求數(shù)列的通項公式;
(II)若數(shù)列的前n項和.
(1),;(2).

試題分析:(1)根據(jù)題意,設出等差數(shù)列的公差,利用題中等差數(shù)列的前六項和為60,且 的等比中項求出,再利用題型公式和前項和公式求出;(2)根據(jù),可選擇累加法求出數(shù)列的通項公式,代入到,根據(jù)其特征,利用裂項相消法求出最終的結(jié)果.
試題解析:(1)設數(shù)列的公差是,則,即
,即                                      ②
由①②解得


由(1)知



……

累加,得




所以

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列的首項,公差.且分別是等比數(shù)列
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設數(shù)列對任意自然數(shù)均有 成立,求  的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

數(shù)列是等差數(shù)列,,其中,則此數(shù)列的前項和_______ .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

等差數(shù)列的前項和為,已知.
(1)求通項公式;
(2)若.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等差數(shù)列的前項和為,若,,則等于( 。
A.12B.18C.24D.42

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設Sn為等差數(shù)列{a n}的前n項和,已知a 9 =-2,S 8 =2.
(1)求首項a1和公差d的值;
(2)當n為何值時,Sn最大?并求出Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項和為Sn,且an是Sn與2的等差中項,數(shù)列{an}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.
(Ⅰ) 求數(shù)列{an},{bn}的通項公式an和bn
(Ⅱ) 設cn=an•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將石子擺成如圖的梯形形狀.稱數(shù)列為“梯形數(shù)”.根據(jù)圖形的構(gòu)成,數(shù)列第         ;第         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

為實數(shù),為不超過實數(shù)的最大整數(shù),記,則的取值范圍為,現(xiàn)定義無窮數(shù)列如下:,當時,;當時,.如果,則       

查看答案和解析>>

同步練習冊答案