統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)的耗油量P(升)關(guān)于行駛速度x(千米/小時(shí))的函數(shù)解析式為:P=
1
102400
x3-
3
80
x+a(0<x≤120).當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),每小時(shí)耗油
57
8
升.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)已知甲、乙兩地相距100千米,汽油的價(jià)格是8元/升,司機(jī)每小時(shí)的工資是16元,當(dāng)汽車以多大速度行駛時(shí),從甲地到乙地的總費(fèi)用最少?最少是多少元?.
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)先將x=40時(shí),y=
57
8
代入解析式求出a的值;
(2)設(shè)速度為xkg/h,然后表示出運(yùn)行的時(shí)間,再結(jié)合已知求出每小時(shí)費(fèi)用,即可將總的費(fèi)用表示出來得到一個(gè)關(guān)于x函數(shù),再利用導(dǎo)數(shù)求該函數(shù)在(0,120]上的最小值.
解答: 解:(Ⅰ)當(dāng) x=40時(shí),汽車每小時(shí)耗油
1
102400
×403-
3
80
×40+a=a-
7
8
(升),
依題意得:a-
7
8
=
57
8
,解得a=8,所以實(shí)數(shù)a的值為8.
(Ⅱ)當(dāng)速度為x千米/小時(shí)時(shí),汽車從甲地到乙地行駛了
100
x
小時(shí),
設(shè)從甲地到乙地的總費(fèi)用為y=f(x)元,依題意得
f(x)=
100
x
[(
1
102400
x3-
3
80
x+8)×8+16]
=
1
128
x2+
8000
x
-30(0<x≤120)
,
f′(x)=
x
64
-
8000
x2
=
x3-803
64x2
(0<x≤120)
,
令f′(x)=0,得x=80,易知
當(dāng)x∈(0,80)時(shí),f′(x)<0,此時(shí)f(x)是減函數(shù);
當(dāng)x∈(80,120)時(shí),f′(x)>0,此時(shí)f(x)是增函數(shù).
所以當(dāng)x=80時(shí),f(x)取到極小值f(80)=120,
因?yàn)閒(x)在(0,120]上只有一個(gè)極值,所以它是最小值.
答:當(dāng)汽車以80千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地的總費(fèi)用最少,為120元.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)在生活中的優(yōu)化問題中的應(yīng)用,要注意解題過程的規(guī)范性,特別是確定最值時(shí)的過程要規(guī)范.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x-2
2x-1
,則f(
1
2015
)+f(
2
2015
)+f(
3
2015
)+…+f(
2014
2015
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
-1+
3
i
2
(i是虛數(shù)單位),則z+z2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的函數(shù),給出下列四個(gè)命題:
①若f(x)是奇函數(shù),則f(x)•f(-x)≥0;
②若f(x)是偶函數(shù),則f(x)•f(-x)≥0;
③若f(x)是增函數(shù),則f(x)≥f(-x);
④若f(x)是增函數(shù),則f(|x|)≥f(x).
其中正確的是
 
.(將你認(rèn)為正確的命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知邊長(zhǎng)為2的正方體ABCD-A1B1C1D1,P是棱CC1上任一點(diǎn),CC1=m,(0<m<2).
(1)是否存在滿足條件的實(shí)數(shù)m,使平面BPD1⊥面BDD1B1?若存在,求出m的值;不存在,說明理由.
(2)是否存在實(shí)數(shù)m,使得三棱錐B-PAC和四棱錐P-A1B1C1D1的體積相等?存在,求出m的值;不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=loga(x+3)+
8
9
(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A也在函數(shù)f(x)=3x+b的圖象上,則 b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2ln(ax)(a>0).
(1)a=e時(shí),求f(x)在x=1處的切線方程;
(2)若f′(x)≤x2對(duì)任意的x>0恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=1時(shí),設(shè)函數(shù)g(x)=
f(x)
x
,若x1,x2∈(
1
e
,1),x1+x2<1,求證:x1•x2<(x1+x24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(x+1),g(x)=2lg(2x+t)(t為參數(shù)).
(1)寫出函數(shù)f(x)的定義域和值域;
(2)當(dāng)x∈[0,1]時(shí),求函數(shù)g(x)解析式中參數(shù)t的取值范圍;
(3)當(dāng)x∈[0,1]時(shí),如果f(x)≤g(x),求參數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2
x+1

(1)判斷函數(shù)f(x)在區(qū)間[0,+∞)上的單調(diào)性,并用定義證明;
(2)解關(guān)于x的不等式:f(x)<a+x(a∈R).

查看答案和解析>>

同步練習(xí)冊(cè)答案