已知集合A={x|-1<x<7},B={x|x>a},若A∩B=∅,求實(shí)數(shù)a的取值范圍.
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:利用交集定義和不等式性質(zhì)求解.
解答: 解:∵集合A={x|-1<x<7},B={x|x>a},A∩B=∅,
∴a≥7.
∴實(shí)數(shù)a的取值范圍是[7,+∞).
點(diǎn)評(píng):本題考查實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

24x+1-17×4x+8=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,過(guò)圓O的直徑AC的端點(diǎn)A作直線AB、AD分別交圓O于另一點(diǎn)B和點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB于E,已知∠EAD=∠CAD.
(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)若DE=6,AE=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a
x
+lnx(a>0).
(1)判斷函數(shù)f(x)在(0,e]上的單調(diào)性(e為自然對(duì)數(shù)的底);
(2)記f′(x)為f(x)的導(dǎo)函數(shù),若函數(shù)g(x)=x3-
a
2
x2+x2f′(x)在區(qū)間(
1
2
,3)上存在極值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(
2
x+a的反函數(shù)f-1(x)的圖象過(guò)原點(diǎn).
(1)若f-1(x-3),f-1
2
-1),f-1(x-4)成等差數(shù)列,求x的值;
(2)若互不相等的三個(gè)正數(shù)m、n、t成等比數(shù)列,問(wèn)f-1(m),f-1(t),f-1(n)能否組成等差數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2
3
,離心率為
3
2
,l是過(guò)點(diǎn)B(0,b)且斜率為k的直線.
(1)求橢圓的方程;
(2)若l交C于另一點(diǎn)D,交x軸于點(diǎn)E,且BD,BE,DE成等比數(shù)列,求k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知矩形ABCD的長(zhǎng)為2,寬為1,AB、AD邊分別在x軸、y軸的正半軸上,A點(diǎn)與坐標(biāo)原點(diǎn)重合(如圖所示).將矩形折疊,使A點(diǎn)落在線段DC上.
(1)若折痕斜率為-1,求折痕所在的直線方程;
(2)若折痕所在直線的斜率為k,試求折痕所在直線的方程;
(3)當(dāng)-2+
3
≤k≤0時(shí),求折痕長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx+
m
x
,m∈R.
(Ⅰ)當(dāng)m=e(e為自然對(duì)數(shù)的底數(shù))時(shí),求f(x)的極小值;
(Ⅱ)討論函數(shù)g(x)=f′(x)-
x
3
零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地區(qū)重視環(huán)境保護(hù),綠色植被面積呈上升趨勢(shì),經(jīng)過(guò)調(diào)查,現(xiàn)有森林面積為10000m2,每年增長(zhǎng)10%,經(jīng)過(guò)x年,森林面積為ym2
(1)寫出x,y之間的函數(shù)關(guān)系式;
(2)求出經(jīng)過(guò)10年后森林的面積.(可借助于計(jì)算器)

查看答案和解析>>

同步練習(xí)冊(cè)答案