設(shè)函數(shù)f(x)在R上是偶函數(shù),在區(qū)間(-∞,0)上遞增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范圍.
.
【解析】
試題分析:由f(x)在R上是偶函數(shù),在區(qū)間(-∞,0)上遞增,
可知f(x)在(0,+∞)上遞減.
∵2a2+a+1=,2a2-2a+3=,
且f(2a2+a+1)<f(2a2-2a+3),∴2a2+a+1>2a2-2a+3,
即3a-2>0,解得.
考點:本題主要考查函數(shù)的奇偶性、單調(diào)性的應(yīng)用,一元二次不等式解法。
點評:典型題,抽象不等式求解問題,往往利用函數(shù)的奇偶性、單調(diào)性,將抽象不等式轉(zhuǎn)化成具體不等式求解。在對稱區(qū)間上,函數(shù)的奇偶性與單調(diào)性存在結(jié)論“奇同偶反”。
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)在R上的導(dǎo)函數(shù)為f’(x),且2f(x)+xf’(x)>x,x下面的不等式在R內(nèi)恒成立的是
A B C D
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)在R上的導(dǎo)函數(shù)為f’(x),且2f(x)+xf’(x)>x,x下面的不等式在R內(nèi)恒成立的是
A B C D
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)在R上要導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)f(x)在x=-2處取得極小值,則函數(shù)y=xf′(x)的圖像可能是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f /(x),且函數(shù)y = (1−x) f /(x)的圖像如圖所示,則下列結(jié)論中一定成立的是
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(−2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(−2)
D.函數(shù)f(x)有極大值f(−2)和極小值f(2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com