已知曲線C1:(為參數(shù)),曲線C2:(t為參數(shù)).
(1)指出C1,C2各是什么曲線,并說明C1與C2公共點的個數(shù);
(2)若把C1,C2上各點的縱坐標都拉伸為原來的兩倍,分別得到曲線.寫出的參數(shù)方程.與公共點的個數(shù)和C公共點的個數(shù)是否相同?說明你的理由.
(1)C1是圓,C2是直線。C2與C1有兩個公共點(2)C1′:,C2′:。有兩個公共點,C1與C2公共點個數(shù)相同
【解析】本試題主要是考查了參數(shù)方程與極坐標方程與普通方程的轉(zhuǎn)化,以及直線與橢圓的 位置關(guān)系的運用。
(1)結(jié)合已知的極坐標方程和參數(shù)方程,消去參數(shù)后得到普通方程,然后利用直線與圓的位置關(guān)系判定。
(2)拉伸后的參數(shù)方程分別為C1′:θ為參數(shù));
C2′:(t為參數(shù))聯(lián)立消元得其判別式,
可知有公共點。
解:(1)C1是圓,C2是直線.C1的普通方程為,
圓心C1(0,0),半徑r=2.C2的普通方程為x-y-1=0.
因為圓心C1到直線x-y+ 1=0的距離為,
所以C2與C1有兩個公共點.
(2)拉伸后的參數(shù)方程分別為C1′:θ為參數(shù));C2′:(t為參數(shù))
化為普通方程為:C1′:,C2′:
聯(lián)立消元得其判別式,
所以壓縮后的直線C2′與橢圓C1′仍然有兩個公共點,和C1與C2公共點個數(shù)相同
科目:高中數(shù)學 來源: 題型:
已知曲線C1:(為參數(shù)),曲線C2:(t為參數(shù)).
(Ⅰ)指出C1,C2各是什么曲線,并說明C1與C2公共點的個數(shù);
(Ⅱ)若把C1,C2上各點的縱坐標都壓縮為原來的一半,分別得到曲線.寫出的參數(shù)方程.與公共點的個數(shù)和C公共點的個數(shù)是否相同?說明你的理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2008年普通高等學校招生全國統(tǒng)一考試理科數(shù)學(寧夏卷) 題型:解答題
已知曲線C1:(為參數(shù)),曲線C2:(t為參數(shù)).
(Ⅰ)指出C1,C2各是什么曲線,并說明C1與C2公共點的個數(shù);
(Ⅱ)若把C1,C2上各點的縱坐標都壓縮為原來的一半,分別得到曲線.寫出的參數(shù)方程.與公共點的個數(shù)和C公共點的個數(shù)是否相同?說明你的理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2012年江蘇省鹽城中學高考數(shù)學二模試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年云南省昆明三中、玉溪一中、楚雄一中高三第二次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com