某商品一年內(nèi)出廠價格在6元的基礎上按月份隨正弦曲線波動,已知3月份達到最高價格8元,7月份價格最低為4元,該商品在商店內(nèi)的銷售價格在8元基礎上按月份隨正弦曲線波動,5月份銷售價格最高為10元,9月份銷售價最低為6元,假設商店每月購進這種商品m件,且當月銷完,你估計哪個月份盈利最大?

估計6月份盈利最大


解析:

設出廠價波動函數(shù)為y1=6+Asin(ω1x+φ1)

易知A=2  T1=8  ω1   1  φ1=-  ∴y1=6+2sin(x-)

設銷售價波動函數(shù)為y2=8+Bsin(ω2x+φ2)

易知B=2  T2=8  ω2    +φ2φ2=-

∴y2=8+2sin(x-)

每件盈利  y=y(tǒng)2-y1=[8+2sin(x-)]-[6+2sin(x-)]

=2-2sinx

當sinx=-1 x=2kπ-x=8k-2時y取最大值

當k=1  即x=6時  y最大  ∴估計6月份盈利最大

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某商品一年內(nèi)出廠價格在6元的基礎上按月份隨正弦曲線波動,已知3月份達到最高價格8元,7月份價格最低為4元,該商品在商店內(nèi)的銷售價格在8元基礎上按月份隨正弦曲線波動,5月份銷售價格最高為10元,9月份銷售價最低為6元,假設商店每月購進這種商品m件,且當月銷完,你估計哪個月份盈利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某商品一年內(nèi)出廠價格在6元的基礎上按月份隨正弦曲線波動,已知3月份達到最高價格8元,7月份價格最低為4元.該商品在商店內(nèi)的銷售價格在8元基礎上按月份隨正弦曲線波動,5月份銷售價格最高為10元,9月份銷售價最低為6元.
(1)試分別建立出廠價格、銷售價格的模型,并分別求出函數(shù)解析式;
(2)假設商店每月購進這種商品m件,且當月銷完,試寫出該商品的月利潤函數(shù);
(3)求該商店月利潤的最大值.(定義運算sinα+cosα=
2
sin(α+
π
4
)

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江西省宜春市高一下學期第一次月考數(shù)學卷 題型:解答題

某商品一年內(nèi)出廠價格在6元的基礎上按月份隨正弦曲線波動,已知3月份達到最高

價格8元,7月份價格最低為4元. 該商品在商店內(nèi)的銷售價格在8元基礎上按月份

隨正弦曲線波動,5月份銷售價格最高為10元,9月份銷售價最低為6元.

    (1)試分別建立出廠價格、銷售價格的模型,并分別求出函數(shù)解析式;

    (2)假設商店每月購進這種商品m件,且當月銷完,試寫出該商品的月利潤函數(shù);

    (3) 求該商店月利潤的最大值。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商品一年內(nèi)出廠價格在6元的基礎上按月份隨正弦曲線波動,已知3月份達到最高價格8元,7月份價格最低為4元,該商品在商店內(nèi)的銷售價格在8元基礎上按月份隨正弦曲線波動,5月份銷售價格最高為10元,9月份銷售價最低為6元,假設商店每月購進這種商品m件,且當月銷完,你估計哪個月份盈利最大?

查看答案和解析>>

同步練習冊答案