已知曲線(xiàn)y=x2+1,點(diǎn)(n,an)(n∈N+)位于該曲線(xiàn)上,則a10=
 
考點(diǎn):數(shù)列的函數(shù)特性
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:利用點(diǎn)在曲線(xiàn)上,推出通項(xiàng)公式,然后求出結(jié)果即可.
解答: 解:曲線(xiàn)y=x2+1,點(diǎn)(n,an)(n∈N+)位于該曲線(xiàn)上,
an=n2+1,
則a10=101.
故答案為:101.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在平面直角坐標(biāo)系中的一條雙曲線(xiàn),它的中心在原點(diǎn),左焦點(diǎn)為F(-
5
,0),且過(guò)點(diǎn)(2,0).
(Ⅰ)求該雙曲線(xiàn)的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)A(1,2),若P是雙曲線(xiàn)上的動(dòng)點(diǎn),求線(xiàn)段PA的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一束光線(xiàn)從點(diǎn)P(0,1)出發(fā),射到x軸上一點(diǎn)A,經(jīng)x軸反射,反射光線(xiàn)過(guò)點(diǎn)Q(2,3),求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)(2,-2)與雙曲線(xiàn)x2-2y2=2有公共漸近線(xiàn)的雙曲線(xiàn)方程為( 。
A、
x2
2
-
y2
4
=1
B、
x2
4
-
y2
2
=1
C、
y2
4
-
x2
2
=1
D、
y2
2
-
x2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)方程為x2-
y2
4
=1
,過(guò)P(2,-1)的直線(xiàn)l與雙曲線(xiàn)只有一個(gè)公共點(diǎn),則直線(xiàn)l的條數(shù)共有( 。
A、4條B、3條C、2條D、1條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-2)2+(y-2)2=1,直線(xiàn)l過(guò)定點(diǎn)A(1,0)
(1)若直線(xiàn)l平分圓的周長(zhǎng),求直線(xiàn)l的方程;
(2)若直線(xiàn)l與圓相切,求直線(xiàn)l的方程;
(3)若直線(xiàn)l與圓C交于PQ兩點(diǎn),求△CPQ面積的最大值,并求此時(shí)的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將編號(hào)為1、2、3的三個(gè)小球放入編號(hào)為甲、乙、丙的三個(gè)盒子中,每盒放入一個(gè)小球,已知1號(hào)小球放入甲盒,2號(hào)小球放入乙盒,3號(hào)小球放入丙盒的概率分別為
3
5
1
2
,
1
2
,記1號(hào)小球放入甲盒為事件A,2號(hào)小球放入乙盒為事件B,3號(hào)小球放入丙盒為事件C,事件A、B、C相互獨(dú)立.
(Ⅰ)求事件A、B、C中至少有兩件發(fā)生的概率;
(2)用ξ表示A、B、C 事件中發(fā)生的個(gè)數(shù),求ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
(1)設(shè)A,B為兩個(gè)定點(diǎn),k為非零常數(shù),|PA|-|PB|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線(xiàn)的一條分支;
(2)若等比數(shù)列的前n項(xiàng)和Sn=2n+k,則必有k=-1;
(3)若x>0,則2x+2-x的最小值為2;
(4)雙曲線(xiàn)
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點(diǎn);
(5)平面內(nèi)到定點(diǎn)(3,-1)的距離等于到定直線(xiàn)x+2y-1=0的距離的點(diǎn)的軌跡是一條直線(xiàn).
其中正確命題的個(gè)數(shù)是(  )
A、1 個(gè)B、2個(gè)
C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人同時(shí)參加環(huán)保知識(shí)晉級(jí)賽,競(jìng)賽規(guī)則是:如果第一輪比賽中有人晉級(jí),則比賽結(jié)束,否則進(jìn)行同等條件下的第二輪比賽,最多比賽兩輪.每輪比賽甲晉級(jí)的概率為0.6,乙晉級(jí)的概率為0.5,甲、乙兩人是否晉級(jí)互不影響.求:
(1)比賽只進(jìn)行一輪的概率P(A);
(2)設(shè)晉級(jí)的人數(shù)為X,試求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案