某化妝品生產(chǎn)企業(yè)為了占有更多的市場份額,擬在2010年世博會(huì)期間進(jìn)行一系列促銷活動(dòng),經(jīng)過市場調(diào)查和測算,化妝品的年銷量x萬件與年促銷費(fèi)t萬元之間滿足3-x與t+1成反比例,如果不搞促銷活動(dòng),化妝品的年銷量只能是1萬件,已知2010年生產(chǎn)化妝品的設(shè)備折舊、維修等固定費(fèi)用為3萬元,每生產(chǎn)1萬件化妝品需要再投入32萬元的生產(chǎn)費(fèi)用,若將每件化妝品的售價(jià)定為:其生產(chǎn)成本的150%與平均每件促銷費(fèi)的一半之和,則當(dāng)年生產(chǎn)的化妝品正好能銷完.
(1)將2010年利潤y(萬元)表示為促銷費(fèi)t(萬元)的函數(shù);
(2)該企業(yè)2010年的促銷費(fèi)投入多少萬元時(shí),企業(yè)的年利潤最大?
(注:利潤=銷售收入-生產(chǎn)成本-促銷費(fèi),生產(chǎn)成本=固定費(fèi)用+生產(chǎn)費(fèi)用)
分析:(1)根據(jù)題意,3-x與t+1成反比例,列出關(guān)系式,然后根據(jù)當(dāng)t=0時(shí),x=1,求出k的值,通過x表示出年利潤y,并化簡,代入整理即可求出y萬元表示為促銷費(fèi)t萬元的函數(shù).
(2)根據(jù)已知代入(1)的函數(shù),分別進(jìn)行化簡,利用關(guān)于t的方程必須有兩正根建立關(guān)系式,可求出最值,即促銷費(fèi)投入多少萬元時(shí),企業(yè)的年利潤最大.
解答:解:(1)由題意:
3-x=,
且當(dāng)t=0時(shí),x=1.
所以k=2,即
x=.
當(dāng)年銷量為x萬件時(shí),成本為3+32x(萬元).
化妝品的售價(jià)為
×150%+×(萬元/萬件)
所以年利潤y=
(×150%+×)x-(3+32x+t)(萬元)
把
x=代入整理得到
y=,其中t≥0.
(2)去分母整理得到:t
2+2(y-49)t+2y-35=0.
該關(guān)于t的方程在[0,+∞)上有解.
當(dāng)2y-35≤0,即y≤17.5時(shí),必有一解.
當(dāng)2y-35>0時(shí),該關(guān)于t的方程必須有兩正根
所以
| 4(y-49)2-4(2y-35)≥0 | -2(y-49)>0 | 2y-35>0 |
| |
.解得:17.5<y≤42.
綜上,年利潤最大為42萬元,此時(shí)促銷費(fèi)t=7(萬元).
所以當(dāng)促銷費(fèi)定在7萬元時(shí),企業(yè)的年利潤最大.…(12分)
點(diǎn)評:本小題主要考查函數(shù)模型的選擇與應(yīng)用、方程根的分布等基礎(chǔ)知識(shí),考查學(xué)生分析問題和解決問題的能力,強(qiáng)調(diào)對知識(shí)的理解和熟練運(yùn)用,屬于中檔題.
科目:高中數(shù)學(xué)
來源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第10課時(shí)):第二章 函數(shù)-函數(shù)的值域(解析版)
題型:解答題
某化妝品生產(chǎn)企業(yè)為了占有更多的市場份額,擬在2005年進(jìn)行一系列的促銷活動(dòng).經(jīng)市場調(diào)查和測算,化妝品的年銷量x萬件與年促銷費(fèi)用t萬元之間滿足:3-x與t+1成反比例.如果不搞促銷活動(dòng),化妝品的年銷量只能是1萬件.又2005年生產(chǎn)化妝品的固定投資為3萬元,每生產(chǎn)1萬件化妝品需再投資32萬元.當(dāng)將化妝品的售價(jià)定為“年平均成本的150%”與“年平均每件所占促銷費(fèi)的一半”之和,則當(dāng)年的產(chǎn)銷量相等.
(1)試用促銷費(fèi)用t表示年銷售量x.
(2)將2005年的利潤y萬元表示為促銷費(fèi)t萬元的函數(shù).
(3)該企業(yè)2005年的促銷費(fèi)投入多少萬元時(shí),企業(yè)的年利潤最大?
查看答案和解析>>