如圖所示,正方體ABCD-A1B1C1D1中,AA1=2,E為棱CC1上的點(diǎn),則B1D1與AE所成的角( )

A.30°
B.45°
C.60°
D.90°
【答案】分析:根據(jù)正方體的身體特征,我們可得B1D1⊥AC,且B1D1⊥EC,進(jìn)而根據(jù)線面垂直的判定定理可得,B1D1⊥平面ACE,進(jìn)而根據(jù)線面垂直的性質(zhì)得到B1D1⊥AE.
解答:解:根據(jù)正方體的幾何特征,我可得:
B1D1⊥AC,且B1D1⊥EC
又由AC∩EC=C
∴B1D1⊥平面ACE
又由AE?平面ACE
∴B1D1⊥AE
即B1D1與AE所成的角為90°
故選D.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是異面直線及其所成的角,其中根據(jù)線面垂直的判定定理及線面垂直的性質(zhì)判斷出B1D1⊥AE是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點(diǎn),G為DD1上一點(diǎn),且D1G:GD=1:2,AC∩BD=O,求證:平面AGO∥平面D1EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是正方體ADD1A1和ABCD的中心,G是C1C的中點(diǎn),設(shè)GF、C1F與AB所成的角分別為α、β,則α+β等于
π
2
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點(diǎn),G為DD1上一點(diǎn),且D1G:GD=1:2,AC∩BD=O,求證:平面AGO//平面D1EF.

 
 


查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方體ABCDA1B1C1D1的棱長為1,點(diǎn)MAB上,且AMAB,點(diǎn)P在平面ABCD上,且動(dòng)點(diǎn)P到直線A1D1的距離的平方與P到點(diǎn)M的距離的平方差為1,在平面直角坐標(biāo)系xAy中,動(dòng)點(diǎn)P的軌跡方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教B版高中數(shù)學(xué)必修2 1.2點(diǎn) 線 面之間的位置關(guān)系練習(xí)卷(解析版) 題型:解答題

(12分)如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點(diǎn),G為DD1上一點(diǎn),且D1G:GD=1:2,AC∩BD=O,求證:平面AGO//平面D1EF.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案