【題目】國家“十三五”計劃,提出創(chuàng)新興國,實現(xiàn)中國創(chuàng)新,某市教育局為了提高學生的創(chuàng)新能力,把行動落到實處,舉辦一次物理、化學綜合創(chuàng)新技能大賽,某校對其甲、乙、丙、丁四位學生的物理成績(x)和化學成績(y)進行回歸分析,求得回歸直線方程為=1.5x﹣35.由于某種原因,成績表(如表所示)中缺失了乙的物理和化學成績.
甲 | 乙 | 丙 | 丁 | |
物理成績(x) | 75 | m | 80 | 85 |
化學成績(y) | 80 | n | 85 | 95 |
綜合素質 (x+y) | 155 | 160 | 165 | 180 |
(1)請設法還原乙的物理成績m和化學成績n;
(2)在全市物理化學科技創(chuàng)新比賽中,由甲、乙、丙、丁四位學生組成學校代表隊參賽.共舉行3場比賽,每場比賽均由賽事主辦方從學校代表中隨機抽兩人參賽,每場比賽所抽的選手中,只要有一名選手的綜合素質分高于160分,就能為所在學校贏得一枚榮譽獎章.若記比賽中贏得榮譽獎章的枚數(shù)為ξ,試根據(jù)上表所提供數(shù)據(jù),預測該校所獲獎章數(shù)ξ的分布列與數(shù)學期望.
【答案】(1)m=80,n=80.(2)見解析,.
【解析】
(1)由回歸直線過樣本中心點得的方程,再由綜合成績又得一的方程,可求得;
(2)ξ的可能值為:0,1,2,3.獲得一枚榮譽獎章的概率P=1,ξ~B(3,),由此可得各概率,得分布列,再由期望公式計算出期望.
(1)由已知可得,,因為回歸直線 =1.5x﹣35過點樣本中心,
所以,∴3m﹣2n=80,
又m+n=160,解得m=80,n=80.
(2)在每場比賽中,比賽中贏得榮譽獎章的枚數(shù)為ξ的可能值為:0,1,2,3.
獲得一枚榮譽獎章的概率P=1,ξ~B(3,),P(ξ=0);
P(ξ=1),
P(ξ=2),
P(ξ=3),
所以預測ξ的分布列為:
ξ | 0 | 1 | 2 | 3 |
P |
|
|
|
|
故預測Eξ=nP=3.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的多面體中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,CM⊥AB,垂足為M,且AE=AC=2,BD=2BC=4,
(1)求證:CM⊥ME;
(2)求二面角A﹣MC﹣E的余弦值.
(3)在線段DC上是否存在一點N,使得直線BN∥平面EMC,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程:在平面直角坐標系中,曲線:(為參數(shù)),在以平面直角坐標系的原點為極點、軸的正半軸為極軸,且與平面直角坐標系取相同單位長度的極坐標系中,曲線:.
(1)求曲線的普通方程以及曲線的平面直角坐標方程;
(2)若曲線上恰好存在三個不同的點到曲線的距離相等,求這三個點的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的奇數(shù)項是首項為的等差數(shù)列,偶數(shù)項是首項為的等比數(shù)列.數(shù)列前項和為,且滿足,.
(1)求數(shù)列的通項公式;
(2)若,求正整數(shù)的值;
(3)是否存在正整數(shù),使得恰好為數(shù)列中的一項?若存在,求出所有滿足條件的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)在其圖象上存在不同的兩點,,其坐標滿足條件:的最大值為0,則稱為“柯西函數(shù)”,則下列函數(shù):①();②();③;④.其中為“柯西函數(shù)”的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差/攝氏度 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)/顆 | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天的數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的2組數(shù)據(jù),請根據(jù)12月2日至4日的數(shù)據(jù),求出關于的線性回歸方程,由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是函數(shù)y=f(x)的導函數(shù),定義為的導函數(shù),若方程=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的拐點,經研究發(fā)現(xiàn),所有的三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有拐點,且都有對稱中心,其拐點就是對稱中心,設f(x)=x3﹣3x2﹣3x+6,則f()+f()+……+f()=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com