【題目】對于無窮數(shù)列,給出下列命題:
①若數(shù)列既是等差數(shù)列,又是等比數(shù)列,則數(shù)列是常數(shù)列.
②若等差數(shù)列滿足,則數(shù)列是常數(shù)列.
③若等比數(shù)列滿足,則數(shù)列是常數(shù)列.
④若各項為正數(shù)的等比數(shù)列滿足,則數(shù)列是常數(shù)列.
其中正確的命題個數(shù)是( )
A. 1B. 2C. 3D. 4
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的一段圖像如圖所示.
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓與軸的左右交點分別為,與軸正半軸的交點為.
(1)若直線過點并且與圓相切,求直線的方程;
(2)若點是圓上第一象限內(nèi)的點,直線分別與軸交于點,點是線段的中點,直線,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為 ,(θ為參數(shù)),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,曲線C2的極坐標方程是ρ= sinθ+cosθ,曲線C3的極坐標方程是θ= . (Ⅰ)求曲線C1的極坐標方程;
(Ⅱ)曲線C3與曲線C1交于點O,A,曲線C3與曲線C2曲線交于點O,B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓形紙片的圓心為O,半徑為5cm,該紙片上的等邊三角形ABC的中心為O.D、E、F為圓O上的點,△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形.沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐.當△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(Ⅰ)證明:平面ACD⊥平面ABC;
(Ⅱ)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D﹣AE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知點,直線l與圓C:(x一1)2+(y一2)2=4相交于A,B兩點,且OA⊥OB.
(1)若直線OA的方程為y=一3x,求直線OB被圓C截得的弦長;
(2)若直線l過點(0,2),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究某藥品的療效,選取若干名志愿者進行臨床試驗,所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,,第五組,右圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為( )
A. 6 B. 8 C. 12 D. 18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,以坐標原點為極點,軸的非負半軸為極軸,取相同的長度單位建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求直線的普通方程和曲線的直角坐標方程;
(Ⅱ)若曲線上的點到直線的最大距離為6,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com