【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為 ,(θ為參數(shù)),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,曲線C2的極坐標方程是ρ= sinθ+cosθ,曲線C3的極坐標方程是θ= . (Ⅰ)求曲線C1的極坐標方程;
(Ⅱ)曲線C3與曲線C1交于點O,A,曲線C3與曲線C2曲線交于點O,B,求|AB|.

【答案】解:(Ⅰ)曲線C1的參數(shù)方程為 ,(θ為參數(shù)),普通方程為(x﹣3)2+y2=9,x2+y2﹣6x=0, 由x=ρcosθ,y=ρsinθ,得ρ2﹣6ρcosθ=0,∴曲線C1的極坐標方程為ρ=6cosθ;
(Ⅱ)設點A的極坐標為(ρ1 , ),點B的極坐標為(ρ2 , ),則ρ1=6cos =3,ρ2= sin +cos =2,
所以AB|=|ρ1﹣ρ2|=1
【解析】(Ⅰ)先把參數(shù)方程轉(zhuǎn)化為普通方程,利用由x=ρcosθ,y=ρsinθ可得極坐標方程;(Ⅱ)利用|AB|=|ρ1﹣ρ2|即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,,,,.

(1)求直線與平面所成角的正弦值.

(2)在棱上是否存在點,使得平面?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸建立極坐標系.若直線l的極坐標方程為 ,曲線C的極坐標方程為:ρsin2θ=cosθ,將曲線C上所有點的橫坐標縮短為原來的一半,縱坐標不變,然后再向右平移一個單位得到曲線C1
(Ⅰ)求曲線C1的直角坐標方程;
(Ⅱ)已知直線l與曲線C1交于A,B兩點,點P(2,0),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足acosC=b﹣ c. (Ⅰ)求角A的大。
(Ⅱ)若B= ,AC=4,求BC邊上的中線AM的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù),),以直角坐標系的原點為極點,以軸的正半軸為極軸建立坐標系,圓的極坐標方程為.

(1)求圓的直角坐標方程(化為標準方程)及曲線的普通方程;

(2)若圓與曲線的公共弦長為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正四面體D﹣ABC(所有棱長均相等的三棱錐),P、Q、R分別為AB、BC、CA上的點,AP=PB, = =2,分別記二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角為α、β、γ,則( )

A.γ<α<β
B.α<γ<β
C.α<β<γ
D.β<γ<α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于無窮數(shù)列,給出下列命題:

①若數(shù)列既是等差數(shù)列,又是等比數(shù)列,則數(shù)列是常數(shù)列.

②若等差數(shù)列滿足,則數(shù)列是常數(shù)列.

③若等比數(shù)列滿足,則數(shù)列是常數(shù)列.

④若各項為正數(shù)的等比數(shù)列滿足,則數(shù)列是常數(shù)列.

其中正確的命題個數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車已成為一種時髦的新型環(huán)保交通工具,某共享單車公司為了拓展市場,對兩個品牌的共享單車在編號分別為1,2,3,4,5的五個城市的用戶人數(shù)(單位:十萬)進行統(tǒng)計,得到數(shù)據(jù)如下:

城市品牌

1

2

3

4

5

品牌

3

4

12

6

8

品牌

4

3

7

9

5

(Ⅰ)若共享單車用戶人數(shù)超過50萬的城市稱為“優(yōu)城”,否則稱為“非優(yōu)城”,據(jù)此判斷能否有的把握認為“優(yōu)城”和共享單車品牌有關?

(Ⅱ)若不考慮其它因素,為了拓展市場,對品牌要從這五個城市選擇三個城市進行宣傳.

(i)求城市2被選中的概率;

(ii)求在城市2被選中的條件下城市3也被選中的概率.

附:參考公式及數(shù)據(jù)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率e= , 原點到過A(a,0),B(0,﹣b)兩點的直線的距離是
(1)求橢圓的方程;
(2)已知直線y=kx+1(k≠0)交橢圓于不同的兩點E,F(xiàn),且E,F(xiàn)都在以B為圓心的圓上,求k的取值范圍.

查看答案和解析>>

同步練習冊答案