解答題:解答應(yīng)寫(xiě)出必要的文字說(shuō)明、證明過(guò)程或演算步驟

已知函數(shù)

(1)

求函數(shù)f(x)在區(qū)間[-1,1]上的最大值與最小值;

(2)

求證:對(duì)于區(qū)間[-1,1]上任意兩個(gè)自變量的值x1,x2,都有|f(x1)-f(x2)|<1;

(3)

若曲線(xiàn)y=(x)上兩點(diǎn)A、B處的切線(xiàn)都與y軸垂直,且線(xiàn)段AB與x軸有公共點(diǎn),求a的取值范圍.

答案:
解析:

(1)

解:,令,即,解得.…2分

當(dāng)變化時(shí),的變化情況如下表:

的極大值是,極小值是.…5分∴函數(shù)在區(qū)間上的最大值是,最小值是.……………………6分

(2)

解:∵對(duì)于區(qū)間上任意兩個(gè)自變量的值,都有,由(Ⅰ)知函數(shù)在區(qū)間上的最大值是,最小值是

.…………10分

(3)

解:設(shè)條件知,為函數(shù)的兩個(gè)極值點(diǎn),………………………11分

由(Ⅰ)知函數(shù)的極大值為,極小值為

∵線(xiàn)段軸有公共點(diǎn),∴()()……………13分

解得,故所求的范圍是.………14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:廣東實(shí)驗(yàn)中學(xué)華南師附中廣州市第六中學(xué)2007屆高三級(jí)月考試卷(一)、數(shù)學(xué)(理工類(lèi))、(集合與邏輯、函數(shù)、導(dǎo)數(shù)? 題型:044

解答題:解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟

已知二次函數(shù)f(x)=ax2+bx+c

(1)

若任意x1,x2∈R,且x1<x2,都有f(x1)≠f(x2),求證:關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根且必有一個(gè)根屬于

(2)

若關(guān)于x的方程的根為m,且成等差數(shù)列,設(shè)函數(shù)f(x)的圖象的對(duì)稱(chēng)軸方程為x=x0,求證:x0<m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:甘肅省蘭州一中2006-2007學(xué)年度第一學(xué)期高三年級(jí)期中考試、數(shù)學(xué)(理)試題 題型:044

解答題:解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟

已知函數(shù)f(x)=x2-1(x≥1)的圖像C1,曲線(xiàn)C2與C1關(guān)于直線(xiàn)y=x對(duì)稱(chēng)

(1)

求曲線(xiàn)C2的方程y=g(x);

(2)

設(shè)函數(shù)y=g(x)的定義域?yàn)镸,x1,x2∈M,且,求證:;

(3)

設(shè)A,B為曲線(xiàn)C2上任意不同的兩點(diǎn),試證明直線(xiàn)AB與直線(xiàn)y=x必相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:北京九中2006-2007學(xué)年度第一學(xué)期高三期中數(shù)學(xué)統(tǒng)練試題(理科) 題型:044

解答題:解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

已知函數(shù)f(x)的定義域?yàn)?I>R(實(shí)數(shù)集),且對(duì)于任意實(shí)數(shù)xy總有f(x+y)=f(x)·f(y)成立.

(1)

試說(shuō)明函數(shù)yf(x)的圖象必通過(guò)(0,0)點(diǎn),或通過(guò)(0,1)點(diǎn);

(2)

若存在使得,試證對(duì)于任意,f(x)>0總成立;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:綏寧二中2007屆高三數(shù)學(xué)第四次月考試卷(文科) 題型:044

解答題:解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

袋中裝有m個(gè)紅球和n個(gè)白球,m≥n≥2,這些紅球和白球除了顏色不同以外,其余都相同.從袋中同時(shí)取出2個(gè)球.

(1)

若取出是2個(gè)紅球的概率等于取出的是一紅一白的2個(gè)球的概率的整數(shù)倍,試證:m必為奇數(shù)

(2)

在m,n的數(shù)組中,若取出的球是同色的概率等于不同色的概率,試求m+n≤40的所有數(shù)組(m,n).

查看答案和解析>>

同步練習(xí)冊(cè)答案