已知拋物線C:y2=ax(a>0),拋物線上一點N(x0, 2
2
) (x0>1)
到拋物線的焦點F的距離是3.
(1)求a的值;
(2)已知動直線l過點P(4,0),交拋物線C于A、B兩點.
(i)若直線l的斜率為1,求AB的長;
(ii)是否存在垂直于x軸的直線m被以AP為直徑的圓M所截得的弦長恒為定值?如果存在,求出m的方程;如果不存在,說明理由.
分析:(1)點N(x0, 2
2
)
到焦點的距離就是到準線的距離,再利用N(x0, 2
2
)
在拋物線上,即可求a的值;
(2)(i)直線l的方程為與拋物線方程聯(lián)立,利用韋達定理,可求AB的長;
(ⅱ)設存在直線m:x=a滿足題意,則圓心M(
x1+4
2
,
y1
2
)
,過M作直線x=a的垂線,垂足為E,設直線m與圓M的一個交點為G.可得:|EG|2=|MG|2-|ME|2,由此可得結(jié)論.
解答:解:(1)點N(x0, 2
2
)
到焦點的距離就是到準線的距離,
x0+
a
4
=3
…(2分)
N(x0, 2
2
)
在拋物線上得:a•x0=8…(3分)
∴a2-12a+32=0,a=4(舍)或a=8,
∴x0=1(舍)或x0=2…(5分)
(2)設A(x1,y1),B(x2,y2).
(i)直線l的方程為:y=x-4,…(6分)
聯(lián)立
y=x-4
y2=4x
,整理得:x2-12x+16=0…(7分)
∴|AB|=
(1+1)2[(x1+x2)2-4x1x2
=4
10
.…(9分)
(ⅱ)設存在直線m:x=a滿足題意,則圓心M(
x1+4
2
,
y1
2
)
,過M作直線x=a的垂線,垂足為E,設直線m與圓M的一個交點為G.可得:|EG|2=|MG|2-|ME|2,…(11分)
即|EG|2=|MA|2-|ME|2=
(x1-4)2+y12
4
-(
x1+4
2
-a)2

=
1
4
y12+
(x1-4)2-(x1+4)2
4
+a(x1+4)-a2

=x1-4x1+a(x1+4)-a2=(a-3)x1+4a-a2…(13分)
當a=3時,|EG|2=3,此時直線m被以AP為直徑的圓M所截得的弦長恒為定值2
3
.…(14分)
因此存在直線m:x=3滿足題意                                    …(15分)
點評:本題考查拋物線的定義,考查直線與拋物線的位置關系,考查韋達定理的運用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點為F,A是拋物線上橫坐標為4且位于x軸上方的點. A到拋物線準線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點為M(O為坐標原點).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過M作MN⊥FA,垂足為N,求點N的坐標;
(Ⅲ)以M為圓心,4為半徑作圓M,點P(m,0)是x軸上的一個動點,試討論直線AP與圓M的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=2px(p>0),F(xiàn)為拋物線C的焦點,A為拋物線C上的動點,過A作拋物線準線l的垂線,垂足為Q.
(1)若點P(0,4)與點F的連線恰好過點A,且∠PQF=90°,求拋物線方程;
(2)設點M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=2Px(p>0)上橫坐標為4的點到焦點的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設直線y=kx+b(k≠0)與拋物線C交于兩點A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=4x,點M(m,0)在x軸的正半軸上,過M的直線l與C相交于A、B兩點,O為坐標原點.
(I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
(II)問是否存在定點M,不論直線l繞點M如何轉(zhuǎn)動,使得
1
|AM|2
+
1
|BM|2
恒為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=8x與點M(-2,2),過C的焦點,且斜率為k的直線與C交于A,B兩點,若
MA
MB
=0,則k=(  )

查看答案和解析>>

同步練習冊答案