【題目】設(shè)函數(shù)f(x)=alnxbx2(x>0),若函數(shù)f(x)在x=1處與直線y=-相切。

(1)求實(shí)數(shù)a,b的值;

(2)求函數(shù)f(x)在上的最大值。

【答案】(1).

(2)f(x)max.

【解析】

分析:(1)對f(x)進(jìn)行求導(dǎo), 欲求出切線方程,只需求出其斜率即可,故先利用導(dǎo)數(shù)求出在處的導(dǎo)數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率,列出關(guān)于a,b的方程求解即可;

(2)研究閉區(qū)間上的最值問題,先求出函數(shù)的極值,比較極值和端點(diǎn)處的函數(shù)值的大小,最后確定出最大值.

詳解:(1)f′(x)=-2bx,

∵函數(shù)f(x)在x=1處與直線y=-相切,

 解得

(2)由(1)知,f(x)=lnxx2f′(x)=x

當(dāng)x≤e時,令f′(x)>0,得x<1,

f′(x)<0,得1<x≤e,

f(x)在[,1)上是增加的,在(1,e]上是減少的,

f(x)maxf(1)=-

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于直線對稱,且圓心在軸上.

(1)求的標(biāo)準(zhǔn)方程;

(2)已經(jīng)動點(diǎn)在直線上,過點(diǎn)的兩條切線、,切點(diǎn)分別為.

①記四邊形的面積為,求的最小值;

②證明直線恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A在y軸正半軸上,點(diǎn)Pn在x軸上,其橫坐標(biāo)為xn , 且{xn} 是首項為1、公比為2的等比數(shù)列,記∠PnAPn+1n , n∈N*

(1)若 ,求點(diǎn)A的坐標(biāo);
(2)若點(diǎn)A的坐標(biāo)為(0,8 ),求θn的最大值及相應(yīng)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某公路AB一側(cè)有一塊空地△OAB,其中OA=3km,OB=3km,∠AOB=90°.當(dāng)?shù)卣當(dāng)M在中間開挖一個人工湖△OMN,其中M,N都在邊AB上(M,N不與A,B重合,M在A,N之間),且∠MON=30°.

(1)若M在距離A點(diǎn)2km處,求點(diǎn)M,N之間的距離;

(2)為節(jié)省投入資金,人工湖△OMN的面積要盡可能。嚧_定M的位置,使△OMN的面積最小,并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《張邱建算經(jīng)》是中國古代數(shù)學(xué)史上的杰作,該書中有首古民謠記載了一數(shù)列問題:“南山一棵竹,竹尾風(fēng)割斷,剩下三十節(jié),一節(jié)一個圈,頭節(jié)高五寸,頭圈一尺三,逐節(jié)多三分,逐圈少分三,一蟻往上爬,遇圈則繞圈。爬到竹子頂,行程是多遠(yuǎn)?”(注釋:①第節(jié)的高度為0.5尺;②第一圈的周長為1.3尺;③每節(jié)比其下面的一節(jié)多0.03尺;④每圈周長比其下面的一圈少0.013尺),問:此民謠提出的問題的答案是( )

A. 61.395尺B. 61.905尺C. 72.705尺D. 73.995尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=sin(2x+φ)的圖象沿x軸向左平移 個單位后,得到一個偶函數(shù)的圖象,則φ的一個可能的值為(
A.
B.
C.0
D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在區(qū)間[﹣3,3]上隨機(jī)取一個數(shù)x使得|x+1|﹣|x﹣2|≥1的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45/m,新墻的造價為180/m,設(shè)利用的舊墻的長度為x(單位:元)。

)將y表示為x的函數(shù);

)試確定x,使修建此矩形場地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(1+x)e2x , g(x)=ax+ +1+2xcosx,當(dāng)x∈[0,1]時,
(1)求證:
(2)若f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案