【題目】設(shè)命題p:實(shí)數(shù)x滿足(x﹣a)(x﹣3a)<0,其中a>0,命題q:實(shí)數(shù)x滿足
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:由(x﹣a)(x﹣3a)<0,其中a>0,

得a<x<3a,a>0,則p:a<x<3a,a>0.

解得2<x≤3.

即q:2<x≤3.

若a=1,則p:1<x<3,

若p∧q為真,則p,q同時(shí)為真,

,解得2<x<3,

∴實(shí)數(shù)x的取值范圍(2,3)


(2)解:若¬p是¬q的充分不必要條件,即q是p的充分不必要條件,

,即 ,

解得1<a≤2


【解析】(1)若a=1,分別求出p,q成立的等價(jià)條件,利用且p∧q為真,求實(shí)數(shù)x的取值范圍;(2)利用¬p是¬q的充分不必要條件,即q是p的充分不必要條件,求實(shí)數(shù)a的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面ABEF⊥平面ABC,四邊形ABEF為矩形,AC=BC.O為AB的中點(diǎn),OF⊥EC. (Ⅰ)求證:OE⊥FC:
(Ⅱ)若 = 時(shí),求二面角F﹣CE﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)對(duì)中學(xué)生記憶能力x和識(shí)圖能力y進(jìn)行統(tǒng)計(jì)分析,得到如下數(shù)據(jù):

記憶能力x

4

6

8

10

識(shí)圖能力y

3

﹡﹡﹡

6

8

由于某些原因,識(shí)圖能力的一個(gè)數(shù)據(jù)丟失,但已知識(shí)圖能力樣本平均值是5.5.
(Ⅰ)求丟失的數(shù)據(jù);
(Ⅱ)經(jīng)過分析,知道記憶能力x和識(shí)圖能力y之間具有線性相關(guān)關(guān)系,請(qǐng)用最小二乘法求出y關(guān)于x的線性回歸方程
(III)若某一學(xué)生記憶能力值為12,請(qǐng)你預(yù)測(cè)他的識(shí)圖能力值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】到空間不共面的四點(diǎn)距離相等的平面的個(gè)數(shù)為(
A.1個(gè)
B.4個(gè)
C.7個(gè)
D.8個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)(1,2)總可以作兩條直線與圓 x2+y2+kx+2y+k2﹣15=0 相切,則實(shí)數(shù)k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為4的菱形ABCD中,∠DAB=60°.點(diǎn)E、F分別在邊CD、CB上,點(diǎn)E與點(diǎn)C、D不重合,EF⊥AC,EF∩AC=O.沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(1)求證:BD⊥平面POA;
(2)設(shè)點(diǎn)Q滿足 ,試探究:當(dāng)PB取得最小值時(shí),直線OQ與平面PBD所成角的大小是否一定大于 ?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax﹣b(a>0且a≠1)的圖象如圖1所示,則函數(shù)y=cosax+b的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=x﹣2與拋物線y2=2x相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求證:OA⊥OB.
(2)求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,若
(1)求角A的大;
(2)已知 ,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案