在直角坐標平面內(nèi),y軸右側(cè)的一動點P到點的距離比它到軸的距離大
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設為曲線上的一個動點,點,軸上,若為圓的外切三角形,求面積的最小值.

(Ⅰ)(Ⅱ)8.

解析試題分析:(Ⅰ)通過變換和分析可得點的軌跡是拋物線,利用定義可求其標準方程;(Ⅱ)欲求面積最小,先求面積表達式.
試題解析:(Ⅰ)由題知點的距離與它到直線的距離相等,
所以點的軌跡是拋物線,方程為      4分
(Ⅱ)設,則   即
由直線是圓的切線知
同理∵所以是方程的兩根
       8分

由題知
時,取“
面積的最小值為      12分
考點:解析幾何求軌跡方程,坐標運算,基本不等式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切,直線與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;(2)求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,且經(jīng)過點
(Ⅰ)求橢圓的方程;
(Ⅱ)如果過點的直線與橢圓交于兩點(點與點不重合),
①求的值;
②當為等腰直角三角形時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,點為動點,分別為橢圓的左右焦點.已知△為等腰三角形.(1)求橢圓的離心率;(2)設直線與橢圓相交于兩點,是直線上的點,滿足,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知△的兩個頂點的坐標分別是,且所在直線的斜率之積等于
(Ⅰ)求頂點的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(Ⅱ)當時,過點的直線交曲線兩點,設點關于軸的對稱
點為(不重合) 試問:直線軸的交點是否是定點?若是,求出定點,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

秒“嫦娥二號”探月衛(wèi)星由長征三號丙運載火箭送入近地點高度約公里、遠地點高度約萬公里的直接奔月橢圓(地球球心為一個焦點)軌道Ⅰ飛行。當衛(wèi)星到達月球附近的特定位置時,實施近月制動及軌道調(diào)整,衛(wèi)星變軌進入遠月面公里、近月面公里(月球球心為一個焦點)的橢圓軌道Ⅱ繞月飛行,之后衛(wèi)星再次擇機變軌進入以為圓心、距月面公里的圓形軌道Ⅲ繞月飛行,并開展相關技術(shù)試驗和科學探測。已知地球半徑約為公里,月球半徑約為公里。
(Ⅰ)比較橢圓軌道Ⅰ與橢圓軌道Ⅱ的離心率的大;
(Ⅱ)以為右焦點,求橢圓軌道Ⅱ的標準方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,為半圓,為半圓直徑,為半圓圓心,且,為線段的中點,已知,曲線點,動點在曲線上運動且保持的值不變.
(I)建立適當?shù)钠矫嬷苯亲鴺讼,求曲線的方程;
(II)過點的直線與曲線交于兩點,與所在直線交于點,,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示:已知過拋物線的焦點F的直線與拋物線相交于A,B兩點。

(1)求證:以AF為直徑的圓與x軸相切;
(2)設拋物線在A,B兩點處的切線的交點為M,若點M的橫坐標為2,求△ABM的外接圓方程;
(3)設過拋物線焦點F的直線與橢圓的交點為C、D,是否存在直線使得,若存在,求出直線的方程,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過點M(0,1),與橢圓C交于不同兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內(nèi)時,求k的取值范圍.

查看答案和解析>>

同步練習冊答案