18.已知△ABC中,a,b,c為角A,B,C所對的邊,C=$\frac{π}{4}$,且2sin2A-1=sin2B.
(1)求tanB的值;
(2)若b=1,求△ABC的面積.

分析 (1)由三角形內(nèi)角和定理,三角函數(shù)恒等變換的應(yīng)用化簡已知等式可得sin2B=sin2B,結(jié)合sinB≠0,利用同角三角函數(shù)基本關(guān)系式可求tanB的值.
(2)由tanB=2,利用同角三角函數(shù)基本關(guān)系式可求cosB,sinB,sinA的值,由正弦定理可求a,進而利用三角形面積公式即可計算得解.

解答 (本題滿分為12分)
解:(1)由2sin2A-1=sin2B,知-cos2A=sin2B,
又∵$A=π-(B+C)=\frac{3π}{4}-B$,
∴$-cos2(\frac{3π}{4}-B)={sin^2}B$,
即∴sin2B=sin2B,…(4分)
又sinB≠0,
∴2cosB=sinB,故tanB=2.…(5分)
(2)由tanB=2知,B為銳角,且$cosB=\frac{1}{{\sqrt{1+{{tan}^2}B}}}=\frac{{\sqrt{5}}}{5}$,$sinB=\sqrt{1-{{cos}^2}B}=\frac{{2\sqrt{5}}}{5}$,
則$sinA=sin[π-(B+C)]=sin(B+C)=\frac{{2\sqrt{5}}}{5}×\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{5}}}{5}×\frac{{\sqrt{2}}}{2}=\frac{{3\sqrt{10}}}{10}$,…(8分)
∵$\frac{a}{sinA}=\frac{sinB}$,
∴$a=\frac{sinB}•sinA=\frac{{\sqrt{5}}}{2}•\frac{{3\sqrt{10}}}{10}=\frac{{3\sqrt{2}}}{4}$,…(10分)
∴△ABC的面積${S_{△ABC}}=\frac{1}{2}absinC=\frac{3}{8}$. …(12分)

點評 本題主要考查了三角形內(nèi)角和定理,三角函數(shù)恒等變換的應(yīng)用,正弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知二次函數(shù)f(x)滿足f(0)=0且f(x+1)=f(x)+x+1,
(1)求f(x)的表達
(2)求函數(shù)f(x)在[t,t+1]上的最小值g(t)
(3)若g(t)+m≥0對t∈R恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)定義在R上的函數(shù)f(x)、f1(x)和f2(x),滿足f(x)=f1(x)+f2(x),且對任意實數(shù)x1、x2(x1≠x2),恒有|f1(x1)-f1(x2)|>|f2(x1)-f2(x2)|成立.
(1)試寫 出一組滿足條件的具體的f1(x)和f2(x),使f1(x)為增函數(shù),f2(x)為減函數(shù),但f(x)為增函數(shù).
(2)判斷下列兩個命題的真假,并說明理由.
命題1):若f1(x)為增函數(shù),則f(x)為增函數(shù);
命題2):若f2(x)為增函數(shù),則f(x)為增函數(shù).
(3)已知f(x)=x3+x2+x+1,寫出一組滿足條件的具體的f1(x)和f2(x),且f2(x)為非常值函數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知等比數(shù)列{an}的公比q≠1,且a3+a5=8,a2a6=16,則數(shù)列{an}的前2016項的和為( 。
A.8064B.4C.-4D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足an+1=an+2,且a2=3,bn=ln(an)+ln(an+1).
(1)求數(shù)列{bn}的通項公式;
(2)令${c_n}={e^{-{b_n}}}$,求數(shù)列{cn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x2-cosx,對于$[-\frac{π}{2},\frac{π}{2}]$上的任意x1,x2,有如下條件:①x1>x2;②$x_1^2>x_2^2$;③|x1|>x2,④$x_1^2<x_2^2$其中能使f(x1)>f(x2)恒成立的條件是序號是②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=x2-2kx-8在區(qū)間[0,14]上為增函數(shù),則實數(shù)k的取值范圍為(  )
A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}滿足${a_{n+1}}=\frac{{4{a_n}-2}}{{{a_n}+1}}$(n∈N*
(1)若a1=3,${b_n}=\frac{{2-{a_n}}}{{{a_n}-1}}$(n∈N*),求證數(shù)列{bn}是等比數(shù)列,并求{bn}的通項公式bn;
(2)若an>an+1對?n∈N*恒成立,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:?x∈(1,+∞),log3(x+2)-$\frac{2}{{2}^{x}}$>0,則下列敘述正確的是( 。
A.¬p為:?x∈(1,+∞),log3(x+2)-$\frac{2}{2^x}$≤0B.¬p為:?x∈(1,+∞),log3(x+2)-$\frac{2}{2^x}$<0
C.¬p為:?x∈(-∞,1],log3(x+2)-$\frac{2}{2^x}$≤0D.¬p是假命題

查看答案和解析>>

同步練習(xí)冊答案