解答題:解答應寫出文字說明、證明過程或演算步驟

已知橢圓C1的方程為,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點.

(1)

求雙曲線C2的方程

(2)

若直線l:y=kx+與雙曲線C2恒有兩個不同的交點A和B,且(其中O為原點),求k的范圍.

答案:
解析:

(1)

解:設雙曲線的方程為        (1分)

,再由,            (3分)

的方程為                (4分)

(2)

解:將代入

          (5分)

由直線與雙曲線C2交于不同的兩點得:

              (7分)

①           (8分)

,則

     (10分)

,得

,解得:②          (12分)

由①、②得:

故k的取值范圍為.           (14分)


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:山西省實驗中學2006-2007學年度第一學期高三年級第三次月考 數(shù)學試題 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟

(1)

(理)已知數(shù)列相鄰兩項an,an+1是方程的兩根(n∈N+)且a1=2,Sn=c1+c2+…+cn,求an與S2n

(2)

(文)已知f(x)=x2-4x+3,又f(x-1),f(x)是一個遞增等差數(shù)列{an}的前3項

(1)求此數(shù)列的通項公式

(2)求a2+a5+a8+…+a26的值.

查看答案和解析>>

科目:高中數(shù)學 來源:河南省信陽市商城高中2006-2007學年度高三數(shù)學單元測試、不等式二 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

證明下列不等式:

(文)若x,y,z∈R,a,b,c∈R+,則z2≥2(xyyzzx)

(理)若xyz∈R+,且xyzxyz,則≥2

查看答案和解析>>

科目:高中數(shù)學 來源:河南省信陽市商城高中2006-2007學年度高三數(shù)學單元測試、不等式二 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

設f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求證:

(1)

方程f(x)=0有實根.

(2)

a>0且-2<<-1;

(3)

(理)方程f(x)=0在(0,1)內有兩個實根.

(文)設x1,x2是方程f(x)=0的兩個實根,則

查看答案和解析>>

科目:高中數(shù)學 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學沖刺預測卷(四)附答案 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

已知函數(shù)f(x)的圖像與函數(shù)的圖像關于點A(0,1)對稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍;

(理)若,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學沖刺預測卷(四)附答案 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

如圖,直角梯形ABCD中∠DAB=90°,ADBCAB=2,ADBC.橢圓CA、B為焦點且經過點D

(1)建立適當坐標系,求橢圓C的方程;

(2)(文)是否存在直線l與橢圓C交于M、N兩點,且線段MN的中點為C,若存在,求l與直線AB的夾角,若不存在,說明理由.

(理)若點E滿足,問是否存在不平行AB的直線l與橢圓C交于M、N兩點且|ME|=|NE|,若存在,求出直線lAB夾角的范圍,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案