分析 (1)根據(jù)題意和冪函數(shù)的性質(zhì)列出不等式,由一元二次不等式的解法求出p的取值范圍,由p∈z求出p的值,分別代入后利用f(x)是偶函數(shù)驗(yàn)證即可;
(2)由(1)化簡(jiǎn)g(x)的解析式,對(duì)q進(jìn)行分類(lèi)討論,由條件和函數(shù)單調(diào)性分別判斷并求出q的值.
解答 解:(1)∵冪函數(shù)f(x)在(0,+∞)上是增函數(shù),
∴$-\frac{1}{2}{p}^{2}+p+\frac{3}{2}>0$,則p2-2p-3<0,
解得-1<p<3,
由p∈z得,p=0,1,2,
當(dāng)p=0或2時(shí),$f(x)={x^{\frac{3}{2}}}$不符合f(x)是偶函數(shù)(舍),
當(dāng)p=1時(shí),f(x)=x2符合題意,
∴p=1,f(x)=x2;
(2)由(1)得,g(x)=(2q-1)x2+x+1,
當(dāng)2q-1=0即$q=\frac{1}{2}$時(shí),g(x)=x+1在R上單增(舍)
當(dāng)2q-1≠0即$q≠\frac{1}{2}$時(shí),若使g(x)在(-∞,-4]單減,且在(-4,0)增,
則對(duì)稱軸為x=-4,即$-\frac{1}{2(2q-1)}=-4$,得 $q=\frac{9}{16}$.
經(jīng)驗(yàn)證:當(dāng)$q=\frac{9}{16}$時(shí),能滿足f(x)在[-x,-4]上單減,在(-4,0)上單增.
∴存在$q=\frac{9}{16}$符合題意.
點(diǎn)評(píng) 本題考查了冪函數(shù)的單調(diào)性和奇偶性,一元二次函數(shù)的性質(zhì),以及一元二次不等式的解法,考查分類(lèi)討論思想,化簡(jiǎn)、計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 無(wú)法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(\frac{2}{3}π+kπ,0)$ | B. | $(\frac{2}{3}π+2kπ,0)$ | C. | $(\frac{2}{3}+2k,0)$ | D. | $(\frac{2}{3}+k,0)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,$\frac{1}{2}$) | B. | (-1,1) | C. | (-2,$\frac{1}{2}$) | D. | (-1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com