【題目】如圖,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1=3,AC⊥BC,點M在線段AB上.
(1)若M是AB中點,證明AC1∥平面B1CM;
(2)當BM時,求直線C1A1與平面B1MC所成角的正弦值.
【答案】(1)證明見解析(2)
【解析】
(1)連結(jié)BC1,交B1C于E,連結(jié)ME.利用三角形的中位線證得,由此證得平面.
(2)以為原點建立空間直角坐標系,通過直線的方向向量和平面的法向量,計算出線面角的正弦值.
(1)證明:連結(jié)BC1,交B1C于E,連結(jié)ME.
∵側(cè)面BB1C1C為矩形,
∴E為BC1的中點,又M是AB的中點,
∴ME∥AC1.
又ME平面B1CM,AC1平面B1CM,
∴AC1∥平面B1CM.
(2)以C為原點,以CB,CA,CC1為坐標軸建立空間直角坐標系C﹣xyz如圖所示:
則B1(0,3,3),A1(3,0,3),A(3,0,0),B(0,3,0),C1(0,0,3),AB=3,∴BMBA.
∴(0,3,3),(1,2,0),(3,0,0).
設(shè)平面B1MC的法向量為(x,y,z),則0,,
∴,令z=1得(2,﹣1,1).
∴cos,.
故當BM時,直線C1A1與平面B1MC所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位: )和年利潤(單位:千元)的影響,對近8年的年宣傳費和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
表中,.
(1)根據(jù)散點圖判斷, 與哪一個適宜作為年銷售量關(guān)于年宣傳費的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知這種產(chǎn)品的年利潤與、的關(guān)系為.根據(jù)(2)的結(jié)果要求:年宣傳費為何值時,年利潤最大?
附:對于一組數(shù)據(jù), ,…, 其回歸直線的斜率和截距的最小二乘估計分別為, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線:,過點的直線的參數(shù)方程為:(為參數(shù)),直線與曲線分別交于、兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)求線段的長和的積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,且上焦點為,過的動直線與橢圓相交于、兩點.設(shè)點,記、的斜率分別為和.
(1)求橢圓的方程;
(2)如果直線的斜率等于,求的值;
(3)探索是否為定值?如果是,求出該定值;如果不是,求出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lg(﹣x2+5x﹣6)的定義域為A,函數(shù)g(x),x∈(0,m)的值域為B.
(1)當m=2時,求A∩B;
(2)若“x∈A”是“x∈B”的必要不充分條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD為矩形,點A、E、B、F共面,且和均為等腰直角三角形,且90°.
(Ⅰ)若平面ABCD平面AEBF,證明平面BCF平面ADF;
(Ⅱ)問在線段EC上是否存在一點G,使得BG∥平面CDF,若存在,求出此時三棱錐G-ABE與三棱錐G-ADF的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部門在同一上班高峰時段對甲、乙兩座地鐵站各隨機抽取了50名乘客,統(tǒng)計其乘車等待時間(指乘客從進站口到乘上車的時間,乘車等待時間不超過40分鐘).將統(tǒng)計數(shù)據(jù)按,,,分組,制成頻率分布直方圖:
(1)求的值;
(2)記表示事件“在上班高峰時段某乘客在甲站乘車等待時間少于20分鐘”,試估計的概率;
(3)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間左端點值來估計,記在上班高峰時段甲、乙兩站各抽取的50名乘客乘車的平均等待時間分別為,,求的值,并直接寫出與的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)購已經(jīng)逐漸融入了人們的生活.在家里面不用出門就可以買到自己想要的東西,在網(wǎng)上付款即可,兩三天就會送到自己的家門口,如果近的話當天買當天就能送到,或者第二天就能送到,所以網(wǎng)購是非常方便的購物方式.某公司組織統(tǒng)計了近五年來該公司網(wǎng)購的人數(shù)(單位:人)與時間(單位:年)的數(shù)據(jù),列表如下:
1 | 2 | 3 | 4 | 5 | |
24 | 27 | 41 | 64 | 79 |
(1)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合與的關(guān)系,請計算相關(guān)系數(shù)并加以說明(計算結(jié)果精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式 ,參考數(shù)據(jù).
(2)建立關(guān)于的回歸方程,并預(yù)測第六年該公司的網(wǎng)購人數(shù)(計算結(jié)果精確到整數(shù)).
(參考公式: ,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形中,點,分別為邊,的中點,將沿所在直線進行翻折,將沿所在直線進行翻折,在翻折的過程中,
①點與點在某一位置可能重合;②點與點的最大距離為;
③直線與直線可能垂直; ④直線與直線可能垂直.
以上說法正確的個數(shù)為( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com