9.有甲、乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.
優(yōu)秀非優(yōu)秀總計
甲班10
乙班30
合計105
已知在全部105人中隨機抽取一人為優(yōu)秀的概率為$\frac{2}{7}$.
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按97.5%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優(yōu)秀的學生抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到8或9號的概率.
參考公式和數(shù)據(jù):${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

分析 (1)根據(jù)題意,填寫2×2列聯(lián)表即可;
(2)根據(jù)列聯(lián)表中的數(shù)據(jù),計算觀測值K2,對照臨界值表得出結論;
(3)利用列舉法計算基本事件數(shù),即可求出對應的概率值.

解答 解:(1)根據(jù)題意,填寫2×2列聯(lián)表如下;

優(yōu)秀非優(yōu)秀總計
甲班104555
乙班203050
合計3075105
…(4分)
(2)根據(jù)列聯(lián)表中的數(shù)據(jù),計算
${K^2}=\frac{{105×{{(10×30-20×45)}^2}}}{55×50×30×75}≈6.109>5.02$,
對照臨界值表得,
有97.5%的把握認為成績與班級有關系;…(8分)
(3)設“抽到10或11號”為事件A,先后兩次拋擲一枚均勻的骰子,
出現(xiàn)的點數(shù)為(x,y),則所有基本事件是
(1,1)、(1,2)、(1,3)、…、(6,6),共36個;
事件A包含的基本事件是
(2,6)、(3,5)、(4,4)、(5,3)、(6,2)、
(3,6)、(4,5)、(5,4)、(6,3)共9個,
∴所求的概率值為$P(A)=\frac{9}{36}=\frac{1}{4}$.…(12分)

點評 本題考查了獨立性檢驗和列舉法求古典概型的概率問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.設函數(shù)f(x)=|2x-4|+1.
(1)畫出函數(shù)y=f(x)的圖象.
(2)若對任意x∈R,f(x)≥a2-3a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在三棱錐中A-BCD,A(0,0,2),B(4,4,0),C(4,0,0),D(0,4,3),若下列網(wǎng)格紙上小正方形的邊長為1,則三棱錐A-BCD的三視圖不可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,離心率為$\frac{{2\sqrt{5}}}{5}$,過點F2且與x軸垂直的直線被橢圓截得的線段長為$\frac{{2\sqrt{5}}}{5}$.
(1)求橢圓的方程;
(2)設過點F2的直線l與橢圓相交于A,B兩點,若M(-6,0),求當三角形MAB的面積S最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=x(x-m)2在x=2處取得極小值,則常數(shù)m的值為(  )
A.2B.6C.2或6D.以上答案都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.點M的極坐標$(4,\frac{5π}{6})$化成直角坐標的結果是$(-2\sqrt{3},2)$..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.P點在曲線$\left\{\begin{array}{l}x=4+2cosθ\\ y=2sinθ\end{array}$上,點Q在曲線θ=$\frac{π}{4}$(ρ∈R)上,則|PQ|的最小值為2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=ln(x+2)-x2+mx+n在點x=1處的切線與直線3x+7y+1=0垂直,且f(-1)=0;
(1)求實數(shù)m和n的值;
(2)求函數(shù)f(x)在區(qū)間[0,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.數(shù)列{an}滿足$\frac{{a}_{1}}{1}$+$\frac{{a}_{2}}{3}$+$\frac{{a}_{3}}{5}$+…+$\frac{{a}_{n}}{2n-1}$=3n+1,則數(shù)列{an}的通項公式為an=(2n-1)•2•3n

查看答案和解析>>

同步練習冊答案