(本小題滿分12分)

甲、乙兩人各射擊一次,擊中目標的概率分別是假設兩人射擊是否擊中目標,相互

之間沒有影響;每人各次射擊是否擊中目標,相互之間也沒有影響

(1)甲射擊3次,至少1次未擊中目標的概率;

(2)假設某人連續(xù)2次未擊中目標,則停止射擊,問:乙恰好射擊4次后,被中止射擊的概率是多少?

⑶設甲連續(xù)射擊3次,用表示甲擊中目標時射擊的次數(shù),求的數(shù)學期望.(結(jié)果可以用分數(shù)表示)

 

 

 

 

【答案】

解:(1)記“甲連續(xù)射擊3次,至少1次未擊中目標”為事件A1,由題意,射擊3次,相當于3次獨立重復試驗,故P(A1)=1- P()=1-=

答:甲射擊3次,至少1次未擊中目標的概率為;……………………4分

(2) 記“乙恰好射擊4次后,被中止射擊”為事件A2,由于各事件相互獨立,

故P(A2)=×××+××× =,

答:乙恰好射擊4次后,被中止射擊的概率是……………………8分

(3)根據(jù)題意服從二項分布,……………………12分

(3)方法二:   

          

0

1

2

3

 

 

……………………12分

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案