【題目】平面直角坐標(biāo)系xOy中,曲線C:(x﹣1)2+y2=1.直線l經(jīng)過點P(m,0),且傾斜角為 .以O(shè)為極點,以x軸正半軸為極軸,建立坐標(biāo)系.
(1)寫出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于A,B兩點,且|PA||PB|=1,求實數(shù)m的值.

【答案】
(1)解:曲線C:(x﹣1)2+y2=1.展開為:x2+y2=2x,可得ρ2=2ρcosθ,即曲線C的極坐標(biāo)方程為ρ=2cosθ.

直線l的參數(shù)方程為: ,(t為參數(shù)).


(2)解:設(shè)A,B兩點對應(yīng)的參數(shù)分別為t1,t2.把直線l的參數(shù)方程代入x2+y2=2x,可得:t2+( )t+m2﹣2m=0,∴t1t2=m2﹣2m.

∵|PA||PB|=1,∴|m2﹣2m|=1,解得m=1或1±


【解析】(1)曲線C:(x﹣1)2+y2=1.展開為:x2+y2=2x,把 代入可得曲線C的極坐標(biāo)方程.直線l的參數(shù)方程為: ,(t為參數(shù)).(2)設(shè)A,B兩點對應(yīng)的參數(shù)分別為t1 , t2 . 把直線l的參數(shù)方程圓的方程可得:t2+( )t+m2﹣2m=0,利用|PA||PB|=1,可得|m2﹣2m|=1,解得m即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)滿足f(x﹣1)=2x+3a,且f(a)=7.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=xf(x)+λf(x)+x在[0,2]上最大值為2,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)= 的定義域集合是A,函數(shù)g(x)=lg[x2﹣(2a+1)x+a2+a]的定義域集合是B.
(1)求集合A,B.
(2)若A∪B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列滿足: .為數(shù)列的前項和.

(Ⅰ)求證:對任意正整數(shù),有;

(Ⅱ)設(shè)數(shù)列的前項和為,求證:對任意,總存在正整數(shù),使得時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足 ,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入﹣總成本);
(2)要使工廠有盈利,求產(chǎn)量x的范圍;
(3)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)A∩B;
(2)若C={x|x≥a},且B∩C=B,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,x∈[2,4].
(1)判斷f(x)的單調(diào)性,并利用單調(diào)性的定義證明:
(2)求f(x)在[2,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且f(x)= ,則g[f(﹣7)]=(
A.3
B.﹣3
C.2
D.﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項和為Sn=2an﹣2,數(shù)列{bn}是首項為a1 , 公差不為零的等差數(shù)列,且b1 , b3 , b11成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)設(shè)數(shù)列{cn}滿足cn= ,前n項和為Pn , 對于n∈N*不等式 Pn<t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案