已知橢圓的方程為,雙曲線(xiàn)的左、右焦點(diǎn)分別為的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn).

    (1) 求雙曲線(xiàn)的方程;

    (2) 若直線(xiàn)與橢圓及雙曲線(xiàn)恒有兩個(gè)不同的交點(diǎn),且的兩個(gè)交點(diǎn)滿(mǎn)足(其中為原點(diǎn)),求的取值范圍.

 

 


 

 

【答案】

 解:(Ⅰ)設(shè)雙曲線(xiàn)C2的方程為,則

故C2的方程為      4′

(II)將

由直線(xiàn)l與橢圓C1恒有兩個(gè)不同的交點(diǎn)得

即             ①  6′

.

由直線(xiàn)l與雙曲線(xiàn)C2恒有兩個(gè)不同的交點(diǎn)A,B得

          8′

         

解此不等式得        ③

由①、②、③得                    

 故k的取值范圍為    12′

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點(diǎn),且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線(xiàn)MB的垂線(xiàn)x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線(xiàn)MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省湖州市高二12月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知雙曲線(xiàn)的焦點(diǎn)、實(shí)軸端點(diǎn)分別恰好是橢圓的長(zhǎng)軸端點(diǎn)、焦點(diǎn),則雙

曲線(xiàn)的漸近線(xiàn)方程為(    )

A.      B.      C.      D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線(xiàn)MB的垂線(xiàn)x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線(xiàn)MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮南市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線(xiàn)MB的垂線(xiàn)x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線(xiàn)MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線(xiàn)MB的垂線(xiàn)x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線(xiàn)MB上射R的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案