求(2x-1)5的展開式中
(1)各項(xiàng)系數(shù)之和;
(2)各項(xiàng)的二項(xiàng)式系數(shù)之和;
(3)偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和;
(4)各項(xiàng)系數(shù)的絕對(duì)值之和;
(5)奇次項(xiàng)系數(shù)之和.
分析:(1)設(shè)(2x-1)5=a0+a1x+a2x2+…+a5x5令x=1得各項(xiàng)系數(shù)之和a0+a1+…+a5=1;
(2)各項(xiàng)的二項(xiàng)式系數(shù)之和C50+C51+…C55=25=32
(3)偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和
C
1
5
+
C
3
5
+
C
5
5
=
1
2
×25=16

(4)令x=-1,得到各項(xiàng)系數(shù)的絕對(duì)值之和;
(5))奇次項(xiàng)系數(shù)之和為a1+a3+a5,然后求出其值即可.
解答:解:(1)設(shè)(2x-1)5=a0+a1x+a2x2+…+a5x5
令x=1得各項(xiàng)系數(shù)之和a0+a1+…+a5=1;
(2)各項(xiàng)的二項(xiàng)式系數(shù)之和C50+C51+…C55=25=32
(3)偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和
C
1
5
+
C
3
5
+
C
5
5
=
1
2
×25=16

(4)令x=-1,則a0-a1+a2-a3+a4-a5=(-3)5=-243,即各項(xiàng)系數(shù)絕對(duì)值和為243
(5)a1+a3+a5=
(a0+a1+…+a5)-(a0-a1+a2+…-a5)
2
=
1+243
2
=122
點(diǎn)評(píng):求二項(xiàng)展開式的系數(shù)和問(wèn)題,一般通過(guò)觀察,給二項(xiàng)式中的x賦合適的值求出需要的系數(shù)和,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•馬鞍山二模)(1-x2)(2x+1)5的展開式中x4的系數(shù)是
40
40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求(2x-1)5的展開式中

(1)各項(xiàng)系數(shù)之和;

(2)各項(xiàng)的二項(xiàng)式系數(shù)之和;

(3)偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和;

(4)各項(xiàng)系數(shù)的絕對(duì)值之和;

(5)奇次項(xiàng)系數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求(2x-1)5的展開式中
(1)各項(xiàng)系數(shù)之和;
(2)各項(xiàng)的二項(xiàng)式系數(shù)之和;
(3)偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和;
(4)各項(xiàng)系數(shù)的絕對(duì)值之和;
(5)奇次項(xiàng)系數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶市巴縣中學(xué)高二(下)期末數(shù)學(xué)訓(xùn)練試卷1(理科)(解析版) 題型:解答題

求(2x-1)5的展開式中
(1)各項(xiàng)系數(shù)之和;
(2)各項(xiàng)的二項(xiàng)式系數(shù)之和;
(3)偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和;
(4)各項(xiàng)系數(shù)的絕對(duì)值之和;
(5)奇次項(xiàng)系數(shù)之和.

查看答案和解析>>

同步練習(xí)冊(cè)答案