(本題滿分12分)
設(shè)是定義在上的奇函數(shù),函數(shù)的圖象關(guān)于軸對稱,且當(dāng)時,
(I)求函數(shù)的解析式;
(II)若對于區(qū)間上任意的,都有成立,求實數(shù)的取值范圍.

(1)
(2),實數(shù)的取值范圍為

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)
已知函數(shù),其中.
(1)當(dāng)時,求函數(shù)處的切線方程;
(2)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(3)已知,如果存在,使得函數(shù)處取得最小值,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),(),曲線在點處的切線垂直于軸.
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)
(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖像在點處的切線的傾斜角為,問:在什么范圍取值時,對于任意的,函數(shù)g(x)=x3 +x2在區(qū)間上總存在極值?
(Ⅲ)當(dāng)時,設(shè)函數(shù),若在區(qū)間上至少存在一個
使得成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)設(shè)函數(shù)f(x)=x2+ex-xex.(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[-2,2]時,不等式f(x)>m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
時,求的單調(diào)區(qū)間;
②若時,函數(shù)的圖象總在函數(shù)的圖象的上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)(注意:仙中、一中、八中的學(xué)生三問全做,其他學(xué)校的學(xué)生只做前兩問)
已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意,恒成立,試確定實數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱;
證明:當(dāng)時,
(3)如果,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)其中,曲線 在點處的切線垂直于軸.
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的極值.

查看答案和解析>>

同步練習(xí)冊答案