【題目】已知橢圓,其焦距為,若,則稱橢圓為“黃金橢圓”.黃金橢圓有如下性質:“黃金橢圓”的左、右焦點分別是,以,,為頂點的菱形的內切圓過焦點,.

(1)類比“黃金橢圓”的定義,試寫出“黃金雙曲線”的定義;

(2)類比“黃金橢圓”的性質,試寫出“黃金雙曲線”的性質,并加以證明.

【答案】(1)見解析(2)見解析

【解析】分析:(1)“黃金雙曲線“的離心率為的倒數(shù)).

(2)把橢圓結論中點交換位置得雙曲線的性質.

詳解:(1)黃金雙曲線的定義:已知雙曲線,其焦距為,若(或寫成),則稱雙曲線為“黃金雙曲線”.

(2)在黃金雙曲線的性質:已知黃金雙曲線的左、右焦點分別是、,

、、為頂點的菱形的內切圓過頂點、.

證明:直線的方程為,原點到該直線的距離,

,得 ,

代入,得,又將代入,化簡得,

故直線與圓相切,同理可證直線、均與圓相切,即以的直徑的圓為菱形的內切圓,命題得證.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的值域為A,.

(1)的為偶函數(shù)時,求的值;

(2) , A上是單調遞增函數(shù),求的取值范圍;

(3)時,(其中),若,且函數(shù)的圖象關于點對稱,在處取 得最小值,試探討應該滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若執(zhí)行下面的程序框圖,輸出的值為3,則判斷框中應填入的條件是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項和為Sn

(1)求an及Sn

(2)令bn(n∈N*),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對任意的x∈[0,+∞),有f(x)≤kx2成立,求實數(shù)k的最小值;
(3)證明: (n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線,以坐標原點為極點,以軸正半軸為極軸建立極坐標系.

(1)求曲線的普通方程和曲線的極坐標方程;

(2)若射線與曲線分別交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某種書籍每冊的成本費(元)與印刷冊數(shù)(千冊)的數(shù)據作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

4.83

4.22

0.3775

60.17

0.60

-39.38

4.8

其中,.

為了預測印刷千冊時每冊的成本費建立了兩個回歸模型,.

(1)根據散點圖,你認為選擇哪個模型預測更可靠?(只選出模型即可)

(2)根據所給數(shù)據和(1)中的模型選擇,求關于的回歸方程并預測印刷千冊時每冊的成本費.

附:對于一組數(shù)據,,…,,其回歸方程的斜率和截距的最小二乘估計公式分別為,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】無窮數(shù)列滿足:為正整數(shù),且對任意正整數(shù)為前、、、中等于的項的個數(shù).

1)若,求的值;

2)已知命題 存在正整數(shù),使得,判斷命題的真假并說明理由;

3)若對任意正整數(shù),都有恒成立,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a為正實數(shù),n為自然數(shù),拋物線 與x軸正半軸相交于點A,設f(n)為該拋物線在點A處的切線在y軸上的截距.
(1)用a和n表示f(n);
(2)求對所有n都有 成立的a的最小值;
(3)當0<a<1時,比較 的大小,并說明理由.

查看答案和解析>>

同步練習冊答案