已知函數(shù)f(x)是定義域?yàn)镽的可導(dǎo)函數(shù),且滿足(x2+3x-4)f′(x)<0,給出下列說法:
①函數(shù)f(x)的單調(diào)遞減區(qū)間是(-∞,-4)∪(1,+∞);
②f(x)有2個(gè)極值點(diǎn);
③f(0)+f(2)>f(-5)+f(-3);
④f(x)在(-1,4)上單調(diào)遞增.
其中不正確的說法是( )
A.②③④
B.①④
C.①③
D.①③④
【答案】分析:由題意可得(x2+3x-4)與f′(x)異號(hào),由不等式x2+3x-4<0解得,-4<x<1,故當(dāng)-4<x<1時(shí)函數(shù)f(x)單調(diào)遞增,當(dāng)x<-4或x>1時(shí)函數(shù)f(x)單調(diào)遞減,下面以此判斷即可.
解答:解:由題意可得(x2+3x-4)與f′(x)異號(hào),而由不等式x2+3x-4<0解得,-4<x<1
可得當(dāng)-4<x<1時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增;當(dāng)x<-4或x>1時(shí)f′(x)<0,函數(shù)f(x)單調(diào)遞減.
故①錯(cuò)誤,不能用符號(hào)“∪”;
②正確,極值點(diǎn)為-4,1;
④錯(cuò)誤,在(-1,4)上不具備單調(diào)性;
③錯(cuò)誤,從已知的條件不能推出f(0)+f(2)>f(-5)+f(-3).
故不正確的為:①③④
故選D
點(diǎn)評:本題為函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用,涉及單調(diào)性和極值的定義,屬基礎(chǔ)題.