設(shè)函數(shù).
(1)當(dāng),時(shí),求函數(shù)的最大值;
(2)令,其圖象上存在一點(diǎn),使此處切線的斜率,求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),方程有唯一實(shí)數(shù)解,求正數(shù)的值.
(1)函數(shù)的最大值為;(2)實(shí)數(shù)的取值范圍是;(3).
解析試題分析:(1)將,代入函數(shù)的解析式,然后利用導(dǎo)數(shù)求出函數(shù)的最大值;(2)先確定函數(shù)的解析式,并求出函數(shù)的導(dǎo)數(shù),然后利用導(dǎo)數(shù)的幾何意義將問(wèn)題轉(zhuǎn)化為,利用恒成立的思想進(jìn)行求解;(3)方法一是利用參數(shù)分離,將問(wèn)題轉(zhuǎn)化為方程、有且僅有一個(gè)實(shí)根,然后構(gòu)造新函數(shù),利用導(dǎo)數(shù)求出函數(shù)的極值從而求出參數(shù)的值;方法二是直接構(gòu)造新函數(shù),利用導(dǎo)數(shù)求函數(shù)的極值,并對(duì)參數(shù)的取值進(jìn)行分類討論,從而求出參數(shù)的值.
試題解析:(1)依題意,的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a5/6/1gdag3.png" style="vertical-align:middle;" />,
當(dāng),時(shí),,,
由 ,得,解得;
由 ,得,解得或.
,在單調(diào)遞增,在單調(diào)遞減;
所以的極大值為,此即為最大值;
(2),,則有在上有解,
∴,
,
所以當(dāng)時(shí),取得最小值,;
(3)方法1:由得,令,,
令,,∴在單調(diào)遞增,
而,∴在,,即,在,,即,
∴在單調(diào)遞減,在單調(diào)遞增,
∴極小值為,令,即時(shí)方程有唯一實(shí)數(shù)解.
方法2:因?yàn)榉匠?img src="http://thumb.zyjl.cn/pic5/tikupic/cb/5/u2abe1.png" style="vertical-align:middle;" />有唯一實(shí)數(shù)解,所以有唯一實(shí)數(shù)解,
設(shè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),.
(Ⅰ)若,求的極小值;
(Ⅱ)在(Ⅰ)的結(jié)論下,是否存在實(shí)常數(shù)和,使得和?若存在,求出和的值.若不存在,說(shuō)明理由.
(Ⅲ)設(shè)有兩個(gè)零點(diǎn),且成等差數(shù)列,試探究值的符號(hào).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ) 求的單調(diào)區(qū)間;
(Ⅱ) 求所有的實(shí)數(shù),使得不等式對(duì)恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
己知函數(shù) .
(I)若是,的極值點(diǎn),討論的單調(diào)性;
(II)當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某出版社新出版一本高考復(fù)習(xí)用書(shū),該書(shū)的成本為5元/本,經(jīng)銷過(guò)程中每本書(shū)需付給代理商m元(1≤m≤3)的勞務(wù)費(fèi),經(jīng)出版社研究決定,新書(shū)投放市場(chǎng)后定價(jià)為元/本(9≤≤11),預(yù)計(jì)一年的銷售量為萬(wàn)本.
(1)求該出版社一年的利潤(rùn)(萬(wàn)元)與每本書(shū)的定價(jià)的函數(shù)關(guān)系式;
(2)當(dāng)每本書(shū)的定價(jià)為多少元時(shí),該出版社一年的利潤(rùn)最大,并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(Ⅰ)設(shè)(其中是的導(dǎo)函數(shù)),求的最大值;
(Ⅱ)求證:當(dāng)時(shí),有;
(Ⅲ)設(shè),當(dāng)時(shí),不等式恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),若在區(qū)間上的最小值為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),;
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在[1,2]上是減函數(shù),求實(shí)數(shù)的取值范圍;
(3)令,是否存在實(shí)數(shù),當(dāng) (是自然對(duì)數(shù)的底數(shù))時(shí),函數(shù)的最小值是.若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)>0)
(1)若的一個(gè)極值點(diǎn),求的值;
(2)上是增函數(shù),求a的取值范圍
(3)若對(duì)任意的總存在>成立,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com