12.已知函數(shù)f(x)滿足f(x+2)=f(x),當x∈[-1,1)時,f(x)=x,則方程f(x)=lgx的根的個數(shù)是4.

分析 根據(jù)題意,在同一坐標系中做出函數(shù)f(x)和y=lgx的圖象,結(jié)合圖形得出方程f(x)=lgx實數(shù)根的個數(shù).

解答 解:∵f(x+2)=f(x)∴f(x)是以2為周期的函數(shù),
又x∈[-1,1)時,f(x)=x,
在同一坐標系中做出函數(shù)f(x)和y=lgx的圖象如下:

如圖所示,f(10)=0,而lg10=1;f(11)=-1,lg11>lg10=1,
且函數(shù)y=lgx是定義域內(nèi)的增函數(shù).
∴兩函數(shù)圖象共有4個交點,
即方程f(x)=lgx共有4個不同的實數(shù)根.
故答案為:4.

點評 本題考查了對數(shù)函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了函數(shù)的周期性問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知t為常數(shù),函數(shù)f(x)=|x3-3x-t+1|在區(qū)間[-2,1]上的最大值為2,則實數(shù)t=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若方程x2sinα-y2cosα=1(0≤α<2π)表示焦點在x軸上的橢圓,則α的取值范圍是( 。
A.($\frac{3}{4}$π,π)B.($\frac{π}{4}$,$\frac{3}{4}$π)C.($\frac{π}{2}$,π)D.($\frac{π}{2}$,$\frac{3}{4}$π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知平面α,β和直線a,b,l滿足α∩β=l,a?α,b?β,a∩b=A,求證:A∈l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知角a的頂點在原點,始邊在x軸正半軸,終邊與圓心在原點的單位圓交于點A(m,$\sqrt{3}$m),則sin2a=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.函數(shù)f(x)=$\frac{{3}^{x}-1}{{3}^{x}+1}$,x∈(a,1)(a<1),判斷函數(shù)f(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)y=2x-3-$\sqrt{a-4x}$的值域為(-∞,$\frac{7}{2}$],則實數(shù)a的值為13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=asinx+btanx+3滿足f($\frac{π}{5}$)=5,求f($\frac{99π}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.試證:對任意大于1的正整數(shù)n有$\frac{1}{3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{(2n-1)(2n+1)}$<$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案