【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

1)求曲線,的普通方程;

2)已知點,若曲線交于,兩點,求的值.

【答案】1;2

【解析】

1)用消參法可得兩曲線的普通方程,曲線可直接用代入法,曲線的方程需變形為,再用代入消元法轉化;

2是雙曲線的左焦點,直線過右焦點,都在雙曲線的右支上,這樣由雙曲線的定義可得,直線的參數(shù)方程是以為起點的標準參數(shù)方程,利用的幾何意義可得,把直線參數(shù)方程代入雙曲線方程應用韋達定理即得.

解:(1)由,

,則.

2)由可知為左焦點,直線過右焦點

又直線斜率(一條漸近線的斜率),所以點,在雙曲線的右支,

所以

令點,對應的參數(shù)分別為,,

代入

,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知曲線為參數(shù)),曲線為參數(shù)),且,點P為曲線的公共點.

1)求動點P的軌跡方程;

2)在以原點O為極點,x軸的非負半軸為極軸的極坐標系中,直線l的極坐標方程為,求動點P到直線l的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)一種產(chǎn)品的原材料費為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機器保養(yǎng)等費用為每件0.05x元,又該廠職工工資固定支出12500元.

1)把每件產(chǎn)品的成本費Px)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費;

2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過3000件,且產(chǎn)品能全部銷售,根據(jù)市場調查:每件產(chǎn)品的銷售價Qx)與產(chǎn)品件數(shù)x有如下關系:,試問生產(chǎn)多少件產(chǎn)品,總利潤最高?(總利潤=總銷售額-總的成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點圖(如圖).

1.47

20.6

0.78

2.35

0.81

-19.3

16.2

表中,.

1)根據(jù)散點圖判斷,哪一個更適宜作燒開一壺水時間關于開關旋鈕旋轉的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結果和表中數(shù)據(jù),建立關于的回歸方程;

3)若旋轉的弧度數(shù)與單位時間內煤氣輸出量成正比,那么為多少時燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在中國,“女排精神”概括的是頑強戰(zhàn)斗、勇敢拼搏精神.在某年度排球超級杯決賽中,中國女排與俄羅斯女排相遇,已知前四局中,戰(zhàn)成了,且在決勝局中,中國隊與俄羅斯隊戰(zhàn)成了,根據(jù)中國隊與俄羅斯隊以往的較量,每個球中國隊獲勝的概率為,假定每個球中國隊是否獲勝相互獨立,則再打不超過4球,中國隊獲得比賽勝利的概率為(

(注:排球的比賽規(guī)則為53勝制,即比賽雙方中的一方先拿到3局勝利為獲勝隊,其中前四局為25分制,即在一方先得到25分,且與對方的分差大于或等于2分,則先拿到25分的一方勝;若一方拿到25分后,但雙方分差小于2分,則比賽繼續(xù),直到一方領先2分為止;若前四局打成,則決勝局采用15分制.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的上頂點為A,右焦點為F,O是坐標原點,是等腰直角三角形,且周長為.

1)求橢圓的方程;

2)若直線lAF垂直,且交橢圓于B,C兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設原點在圓的內部,直線與圓交于兩點;以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

1)求直線和圓的極坐標方程,并求的取值范圍;

2)求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年是我國全面建成小康社會和十三五規(guī)劃收官之年,也是佛山在經(jīng)濟總量超萬億元新起點上開啟發(fā)展新征程的重要歷史節(jié)點.作為制造業(yè)城市,佛山一直堅持把創(chuàng)新擺在制造業(yè)發(fā)展全局的前置位置和核心位置,聚焦打造成為面向全球的國家制造業(yè)創(chuàng)新中心,走世界科技+佛山智造+全球市場的創(chuàng)新發(fā)展之路.在推動制造業(yè)高質量發(fā)展的大環(huán)境下,佛山市某工廠統(tǒng)籌各類資源,進行了積極的改革探索.下表是該工廠每月生產(chǎn)的一種核心產(chǎn)品的產(chǎn)量x)(件)與相應的生產(chǎn)總成本y(萬元)的四組對照數(shù)據(jù).

x

5

7

9

11

y

200

298

431

609

工廠研究人員建立了yx的兩種回歸模型,利用計算機算得近似結果如下:

模型①:

模型②:.

其中模型①的殘差(實際值-預報值)圖如圖所示:

1)根據(jù)殘差分析,判斷哪一個模型更適宜作為y關于x的回歸方程?并說明理由;

2)市場前景風云變幻,研究人員統(tǒng)計歷年的銷售數(shù)據(jù)得到每件產(chǎn)品的銷售價格q(萬元)是一個與產(chǎn)量x相關的隨機變量,分布列為:

q

P

0.5

0.4

0.1

結合你對(1)的判斷,當產(chǎn)量x為何值時,月利潤的預報期望值最大?最大值是多少(精確到0.1)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調性;

(2)表示中的最大值,若函數(shù)只有一個零點,的取值范圍.

查看答案和解析>>

同步練習冊答案