已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,)在直線y=x+上;數(shù)列{bn}滿足bn+2-2bn+1-bn=0(n∈N*),且b3=11,它的前9項(xiàng)和為153.

(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;

(2)設(shè)cn,數(shù)列{cn}的前n項(xiàng)和為Tn,求使不等式Tn對一切n∈N*都成立的最大正整數(shù)k的值;

答案:
解析:

  解:(1)因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/1395/0020/61fa26851c2808e641ca56097d9ac396/C/Image99.gif" width=108 HEIGHT=41>;故當(dāng)時;;當(dāng)時,;滿足上式;所以;

  又因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/1395/0020/61fa26851c2808e641ca56097d9ac396/C/Image105.gif" width=131 HEIGHT=23>,所以數(shù)列為等差數(shù)列;

  由,故;所以公差;

  所以:;  5分

  (2)  6分

  ∴  8分

  由于

  ∴單調(diào)遞增 ∴

  得 ∴  10分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊答案